Björn C. Rall
University of Göttingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Björn C. Rall.
Nature | 2007
Sonja B. Otto; Björn C. Rall; Ulrich Brose
In natural ecosystems, species are linked by feeding interactions that determine energy fluxes and create complex food webs. The stability of these food webs enables many species to coexist and to form diverse ecosystems. Recent theory finds predator–prey body-mass ratios to be critically important for food-web stability. However, the mechanisms responsible for this stability are unclear. Here we use a bioenergetic consumer–resource model to explore how and why only particular predator–prey body-mass ratios promote stability in tri-trophic (three-species) food chains. We find that this ‘persistence domain’ of ratios is constrained by bottom-up energy availability when predators are much smaller than their prey and by enrichment-driven dynamics when predators are much larger. We also find that 97% of the tri-trophic food chains across five natural food webs exhibit body-mass ratios within the predicted persistence domain. Further analyses of randomly rewired food webs show that body mass and allometric degree distributions in natural food webs mediate this consistency. The allometric degree distributions hold that the diversity of species’ predators and prey decreases and increases, respectively, with increasing species’ body masses. Our results demonstrate how simple relationships between species’ body masses and feeding interactions may promote the stability of complex food webs.
Philosophical Transactions of the Royal Society B | 2012
Björn C. Rall; Ulrich Brose; Martin Hartvig; Gregor Kalinkat; Florian Schwarzmüller; Olivera Vucic-Pestic; Owen L. Petchey
Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stability of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and resource body masses and environmental temperature. Despite five decades of research on functional responses as quantitative models of feeding rates, a unifying framework of how they scale with body masses and temperature is still lacking. This is perplexing, considering that the strength of functional responses (i.e. interaction strengths) is crucially important for the stability of simple consumer–resource systems and the persistence, sustainability and biodiversity of complex communities. Here, we present the largest currently available database on functional response parameters and their scaling with body mass and temperature. Moreover, these data are integrated across ecosystems and metabolic types of species. Surprisingly, we found general temperature dependencies that differed from the Arrhenius terms predicted by metabolic models. Additionally, the body-mass-scaling relationships were more complex than expected and differed across ecosystems and metabolic types. At local scales (taxonomically narrow groups of consumer–resource pairs), we found hump-shaped deviations from the temperature and body-mass-scaling relationships. Despite the complexity of our results, these body-mass- and temperature-scaling models remain useful as a mechanistic basis for predicting the consequences of warming for interaction strengths, population dynamics and network stability across communities differing in their size structure.
Journal of Animal Ecology | 2008
Ulrich Brose; Roswitha B. Ehnes; Björn C. Rall; Olivera Vucic-Pestic; Eric L. Berlow; Stefan Scheu
1. In natural communities, populations are linked by feeding interactions that make up complex food webs. The stability of these complex networks is critically dependent on the distribution of energy fluxes across these feeding links. 2. In laboratory experiments with predatory beetles and spiders, we studied the allometric scaling (body-mass dependence) of metabolism and per capita consumption at the level of predator individuals and per link energy fluxes at the level of feeding links. 3. Despite clear power-law scaling of the metabolic and per capita consumption rates with predator body mass, the per link predation rates on individual prey followed hump-shaped relationships with the predator-prey body mass ratios. These results contrast with the current metabolic paradigm, and find better support in foraging theory. 4. This suggests that per link energy fluxes from prey populations to predator individuals peak at intermediate body mass ratios, and total energy fluxes from prey to predator populations decrease monotonically with predator and prey mass. Surprisingly, contrary to predictions of metabolic models, this suggests that for any prey species, the per link and total energy fluxes to its largest predators are smaller than those to predators of intermediate body size. 5. An integration of metabolic and foraging theory may enable a quantitative and predictive understanding of energy flux distributions in natural food webs.
Ecology Letters | 2011
Roswitha B. Ehnes; Björn C. Rall; Ulrich Brose
For more than a century, the scaling of animal metabolic rates with individual body masses and environmental temperature has predominantly been described by power-law and exponential relationships respectively. Many theories have been proposed to explain these scaling relationships, but were challenged by empirically documented curvatures on double-logarithmic scales. In the present study, we present a novel data set comprising 3661 terrestrial (mainly soil) invertebrate respiration rates from 192 independent sources across a wide range in body masses, environmental temperatures and phylogenetic groups. Although our analyses documented power-law and exponential scaling with body masses and temperature, respectively, polynomial models identified curved deviations. Interestingly, complex scaling models accounting for phylogenetic groups were able to remove curvatures except for a negative curvature at the highest temperatures (>30 °C) indicating metabolic down regulation. This might indicate that the tremendous differences in invertebrate body architectures, ecology and physiology may cause severely different metabolic scaling processes.
Philosophical Transactions of the Royal Society B | 2010
Owen L. Petchey; Ulrich Brose; Björn C. Rall
Few models concern how environmental variables such as temperature affect community structure. Here, we develop a model of how temperature affects food web connectance, a powerful driver of population dynamics and community structure. We use the Arrhenius equation to add temperature dependence of foraging traits to an existing model of food web structure. The model predicts potentially large temperature effects on connectance. Temperature-sensitive food webs exhibit slopes of up to 0.01 units of connectance per 1°C change in temperature. This corresponds to changes in diet breadth of one resource item per 2°C (assuming a food web containing 50 species). Less sensitive food webs exhibit slopes down to 0.0005, which corresponds to about one resource item per 40°C. Relative sizes of the activation energies of attack rate and handling time determine whether warming increases or decreases connectance. Differences in temperature sensitivity are explained by differences between empirical food webs in the body size distributions of organisms. We conclude that models of temperature effects on community structure and dynamics urgently require considerable development, and also more and better empirical data to parameterize and test them.
Philosophical Transactions of the Royal Society B | 2012
Amrei Binzer; Christian Guill; Ulrich Brose; Björn C. Rall
Warming has profound effects on biological rates such as metabolism, growth, feeding and death of organisms, eventually affecting their ability to survive. Using a nonlinear bioenergetic population-dynamic model that accounts for temperature and body-mass dependencies of biological rates, we analysed the individual and interactive effects of increasing temperature and nutrient enrichment on the dynamics of a three-species food chain. At low temperatures, warming counteracts the destabilizing effects of enrichment by both bottom-up (via the carrying capacity) and top-down (via biological rates) mechanisms. Together with increasing consumer body masses, warming increases the system tolerance to fertilization. Simultaneously, warming increases the risk of starvation for large species in low-fertility systems. This effect can be counteracted by increased fertilization. In combination, therefore, two main drivers of global change and biodiversity loss can have positive and negative effects on food chain stability. Our model incorporates the most recent empirical data and may thus be used as the basis for more complex forecasting models incorporating food-web structure.
Advances in Ecological Research | 2010
Jens O. Riede; Björn C. Rall; Carolin Banašek-Richter; Sergio A. Navarrete; Evie A. Wieters; Mark Emmerson; Ute Jacob; Ulrich Brose
Summary Trophic scaling models describe how topological food-web properties such as the number of predator–prey links scale with species richness of the community. Early models predicted that either the link density (i.e. the number of links per species) or the connectance (i.e. the linkage probability between any pair of species) is constant across communities. More recent analyses, however, suggest that both these scaling models have to be rejected, and we discuss several hypotheses that aim to explain the scale dependence of these complexity parameters. Based on a recent, highly resolved food-web compilation, we analysed the scaling behaviour of 16 topological parameters and found significant power–law scaling relationships with diversity (i.e. species richness) and complexity (i.e. connectance) for most of them. These results illustrate the lack of universal constants in food-web ecology as a function of diversity or complexity. Nonetheless, our power–law scaling relationships suggest that fundamental processes determine food-web topology, and subsequent analyses demonstrated that ecosystem-specific differences in these relationships were of minor importance. As such, these newly described scaling relationships provide robust and testable cornerstones for future structural food-web models.
Ecology Letters | 2013
Gregor Kalinkat; Florian D. Schneider; Christoph Digel; Christian Guill; Björn C. Rall; Ulrich Brose
The stability of ecological communities depends strongly on quantitative characteristics of population interactions (type-II vs. type-III functional responses) and the distribution of body masses across species. Until now, these two aspects have almost exclusively been treated separately leaving a substantial gap in our general understanding of food webs. We analysed a large data set of arthropod feeding rates and found that all functional-response parameters depend on the body masses of predator and prey. Thus, we propose generalised functional responses which predict gradual shifts from type-II predation of small predators on equally sized prey to type-III functional-responses of large predators on small prey. Models including these generalised functional responses predict population dynamics and persistence only depending on predator and prey body masses, and we show that these predictions are strongly supported by empirical data on forest soil food webs. These results help unravelling systematic relationships between quantitative population interactions and large-scale community patterns.
PLOS ONE | 2011
Gregor Kalinkat; Björn C. Rall; Olivera Vucic-Pestic; Ulrich Brose
The distribution of weak and strong non-linear feeding interactions (i.e., functional responses) across the links of complex food webs is critically important for their stability. While empirical advances have unravelled constraints on single-prey functional responses, their validity in the context of complex food webs where most predators have multiple prey remain uncertain. In this study, we present conceptual evidence for the invalidity of strictly density-dependent consumption as the null model in multi-prey experiments. Instead, we employ two-prey functional responses parameterised with allometric scaling relationships of the functional response parameters that were derived from a previous single-prey functional response study as novel null models. Our experiments included predators of different sizes from two taxonomical groups (wolf spiders and ground beetles) simultaneously preying on one small and one large prey species. We define compliance with the null model predictions (based on two independent single-prey functional responses) as passive preferences or passive switching, and deviations from the null model as active preferences or active switching. Our results indicate active and passive preferences for the larger prey by predators that are at least twice the size of the larger prey. Moreover, our approach revealed that active preferences increased significantly with the predator-prey body-mass ratio. Together with prior allometric scaling relationships of functional response parameters, this preference allometry may allow estimating the distribution of functional response parameters across the myriads of interactions in natural ecosystems.
Philosophical Transactions of the Royal Society B | 2012
David Ott; Björn C. Rall; Ulrich Brose
Macrofauna invertebrates of forest floors provide important functions in the decomposition process of soil organic matter, which is affected by the nutrient stoichiometry of the leaf litter. Climate change effects on forest ecosystems include warming and decreasing litter quality (e.g. higher C : nutrient ratios) induced by higher atmospheric CO2 concentrations. While litter-bag experiments unravelled separate effects, a mechanistic understanding of how interactions between temperature and litter stoichiometry are driving decomposition rates is lacking. In a laboratory experiment, we filled this void by quantifying decomposer consumption rates analogous to predator–prey functional responses that include the mechanistic parameters handling time and attack rate. Systematically, we varied the body masses of isopods, the environmental temperature and the resource between poor (hornbeam) and good quality (ash). We found that attack rates increased and handling times decreased (i) with body masses and (ii) temperature. Interestingly, these relationships interacted with litter quality: small isopods possibly avoided the poorer resource, whereas large isopods exhibited increased, compensatory feeding of the poorer resource, which may be explained by their higher metabolic demands. The combination of metabolic theory and ecological stoichiometry provided critically important mechanistic insights into how warming and varying litter quality may modify macrofaunal decomposition rates.