Gregor Kalinkat
Technische Universität Darmstadt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregor Kalinkat.
Philosophical Transactions of the Royal Society B | 2012
Björn C. Rall; Ulrich Brose; Martin Hartvig; Gregor Kalinkat; Florian Schwarzmüller; Olivera Vucic-Pestic; Owen L. Petchey
Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stability of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and resource body masses and environmental temperature. Despite five decades of research on functional responses as quantitative models of feeding rates, a unifying framework of how they scale with body masses and temperature is still lacking. This is perplexing, considering that the strength of functional responses (i.e. interaction strengths) is crucially important for the stability of simple consumer–resource systems and the persistence, sustainability and biodiversity of complex communities. Here, we present the largest currently available database on functional response parameters and their scaling with body mass and temperature. Moreover, these data are integrated across ecosystems and metabolic types of species. Surprisingly, we found general temperature dependencies that differed from the Arrhenius terms predicted by metabolic models. Additionally, the body-mass-scaling relationships were more complex than expected and differed across ecosystems and metabolic types. At local scales (taxonomically narrow groups of consumer–resource pairs), we found hump-shaped deviations from the temperature and body-mass-scaling relationships. Despite the complexity of our results, these body-mass- and temperature-scaling models remain useful as a mechanistic basis for predicting the consequences of warming for interaction strengths, population dynamics and network stability across communities differing in their size structure.
Journal of Animal Ecology | 2010
Olivera Vucic-Pestic; Björn C. Rall; Gregor Kalinkat; Ulrich Brose
1. Functional responses quantify the per capita consumption rates of predators depending on prey density. The parameters of these nonlinear interaction strength models were recently used as successful proxies for predicting population dynamics, food-web topology and stability. 2. This study addressed systematic effects of predator and prey body masses on the functional response parameters handling time, instantaneous search coefficient (attack coefficient) and a scaling exponent converting type II into type III functional responses. To fully explore the possible combinations of predator and prey body masses, we studied the functional responses of 13 predator species (ground beetles and wolf spiders) on one small and one large prey resulting in 26 functional responses. 3. We found (i) a power-law decrease of handling time with predator mass with an exponent of -0.94; (ii) an increase of handling time with prey mass (power-law with an exponent of 0.83, but only three prey sizes were included); (iii) a hump-shaped relationship between instantaneous search coefficients and predator-prey body-mass ratios; and (iv) low scaling exponents for low predator-prey body mass ratios in contrast to high scaling exponents for high predator-prey body-mass ratios. 4. These scaling relationships suggest that nonlinear interaction strengths can be predicted by knowledge of predator and prey body masses. Our results imply that predators of intermediate size impose stronger per capita top-down interaction strengths on a prey than smaller or larger predators. Moreover, the stability of population and food-web dynamics should increase with increasing body-mass ratios in consequence of increases in the scaling exponents. 5. Integrating these scaling relationships into population models will allow predicting energy fluxes, food-web structures and the distribution of interaction strengths across food web links based on knowledge of the species body masses.
Ecology Letters | 2013
Gregor Kalinkat; Florian D. Schneider; Christoph Digel; Christian Guill; Björn C. Rall; Ulrich Brose
The stability of ecological communities depends strongly on quantitative characteristics of population interactions (type-II vs. type-III functional responses) and the distribution of body masses across species. Until now, these two aspects have almost exclusively been treated separately leaving a substantial gap in our general understanding of food webs. We analysed a large data set of arthropod feeding rates and found that all functional-response parameters depend on the body masses of predator and prey. Thus, we propose generalised functional responses which predict gradual shifts from type-II predation of small predators on equally sized prey to type-III functional-responses of large predators on small prey. Models including these generalised functional responses predict population dynamics and persistence only depending on predator and prey body masses, and we show that these predictions are strongly supported by empirical data on forest soil food webs. These results help unravelling systematic relationships between quantitative population interactions and large-scale community patterns.
PLOS ONE | 2011
Gregor Kalinkat; Björn C. Rall; Olivera Vucic-Pestic; Ulrich Brose
The distribution of weak and strong non-linear feeding interactions (i.e., functional responses) across the links of complex food webs is critically important for their stability. While empirical advances have unravelled constraints on single-prey functional responses, their validity in the context of complex food webs where most predators have multiple prey remain uncertain. In this study, we present conceptual evidence for the invalidity of strictly density-dependent consumption as the null model in multi-prey experiments. Instead, we employ two-prey functional responses parameterised with allometric scaling relationships of the functional response parameters that were derived from a previous single-prey functional response study as novel null models. Our experiments included predators of different sizes from two taxonomical groups (wolf spiders and ground beetles) simultaneously preying on one small and one large prey species. We define compliance with the null model predictions (based on two independent single-prey functional responses) as passive preferences or passive switching, and deviations from the null model as active preferences or active switching. Our results indicate active and passive preferences for the larger prey by predators that are at least twice the size of the larger prey. Moreover, our approach revealed that active preferences increased significantly with the predator-prey body-mass ratio. Together with prior allometric scaling relationships of functional response parameters, this preference allometry may allow estimating the distribution of functional response parameters across the myriads of interactions in natural ecosystems.
Oecologia | 2013
Gregor Kalinkat; Ulrich Brose; Björn C. Rall
The question whether top-down or bottom-up forces dominate trophic relationships, energy flow, and abundances within food webs has fuelled much ecological research with particular focus on soil litter ecosystems. Because litter simultaneously provides habitat structure and a basal resource, disentangling direct trophic and indirect non-trophic effects on different trophic levels remains challenging. Here, we focussed on short-term per capita interaction strengths of generalist predators (centipedes) on their microbi-detritivore prey (springtails) and addressed how the habitat structuring effects of the leaf litter modifies this interaction. We performed a series of laboratory functional response experiments where four levels of habitat structure were constructed by adding different amounts of leaf litter to the experimental arenas. We found that increased leaf litter reduced the consumption rate of the predator. We interpreted this as a dilution effect of the augmented habitat size provided by the increasing leaf litter surface available to the species. Dilution of the prey population decreased encounter rates, whereas the capture success was not affected. Interestingly, our results imply that top-down control by centipedes decreased with increasing resource supply for the microbi-detritivore prey (i.e. the leaf litter that simultaneously provides habitat structure). Therefore, effective top-down control of predators on microbi-detritvore populations seems unlikely in litter-rich ecosystems due to the non-trophic, habitat-structuring effect of the basal litter resource.
Biological Reviews | 2017
Ulrich Brose; Julia L. Blanchard; Anna Eklöf; Nuria Galiana; Martin Hartvig; Myriam R. Hirt; Gregor Kalinkat; Marie C. Nordström; Eoin J. O'Gorman; Björn C. Rall; Florian D. Schneider; Elisa Thébault; Ute Jacob
Understanding the consequences of species loss in complex ecological communities is one of the great challenges in current biodiversity research. For a long time, this topic has been addressed by traditional biodiversity experiments. Most of these approaches treat species as trait‐free, taxonomic units characterizing communities only by species number without accounting for species traits. However, extinctions do not occur at random as there is a clear correlation between extinction risk and species traits. In this review, we assume that large species will be most threatened by extinction and use novel allometric and size‐spectrum concepts that include body mass as a primary species trait at the levels of populations and individuals, respectively, to re‐assess three classic debates on the relationships between biodiversity and (i) food‐web structural complexity, (ii) community dynamic stability, and (iii) ecosystem functioning. Contrasting current expectations, size‐structured approaches suggest that the loss of large species, that typically exploit most resource species, may lead to future food webs that are less interwoven and more structured by chains of interactions and compartments. The disruption of natural body‐mass distributions maintaining food‐web stability may trigger avalanches of secondary extinctions and strong trophic cascades with expected knock‐on effects on the functionality of the ecosystems. Therefore, we argue that it is crucial to take into account body size as a species trait when analysing the consequences of biodiversity loss for natural ecosystems. Applying size‐structured approaches provides an integrative ecological concept that enables a better understanding of each species unique role across communities and the causes and consequences of biodiversity loss.
Oikos | 2011
Björn C. Rall; Gregor Kalinkat; David Ott; Olivera Vucic-Pestic; Ulrich Brose
Current opinion in insect science | 2015
Gregor Kalinkat; Malte Jochum; Ulrich Brose; Anthony I. Dell
Proceedings of the 5th European Congress of Conservation Biology | 2018
Ivan Jarić; Ricardo Correia; Franck Courchamp; Gregor Kalinkat; Yves Meinard; David L. Roberts
Archive | 2015
Gregor Kalinkat; Malte Jochum; Ulrich Brose; Anthony I. Dell