Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Björn Gücker is active.

Publication


Featured researches published by Björn Gücker.


Journal of The North American Benthological Society | 2006

Effects of wastewater treatment plant discharge on ecosystem structure and function of lowland streams

Björn Gücker; Mario Brauns; Martin T. Pusch

Abstract Secondary and tertiary wastewater treatment is common in developed countries, but little is known about the responses of lotic ecosystems to contemporary wastewater treatment plant (WWTP) discharge. We examined the effects of WWTP discharge on various ecosystem components and functions of 2 morphologically and chemically impacted lowland streams near Berlin, Germany. We sampled one reach upstream and one reach downstream of a WWTP in each stream during each of 5 sampling campaigns. Discharge of treated wastewater resulted in increased concentrations of total organic C, total N, and total P in the sediments and in elevated macrophyte and benthic invertebrate biomasses. However, adverse effects of the WWTPs on the benthic invertebrate communities were small compared to effects reported in previous studies. This difference was a result of the higher purification efficiency of modern WWTPs, but also of significant structural degradation and eutrophication of the streams that already had impoverished the invertebrate community upstream of the WWTPs. Whole-stream community respiration (CR24) and gross primary production (GPP) were both enhanced by WWTP discharge. WWTP discharge generally caused diminished NH4- and PO4-uptake efficiencies, but did not necessarily lead to diminished NO3-uptake efficiencies of streams. Increases in areal NO3-uptake rates caused by the discharge of a large municipal WWTP were high enough to result in increased load-specific NO3-uptake efficiencies. Our study shows that the effects of present-day WWTPs on stream ecosystem functioning clearly differ from the former impacts of poorly treated wastewater. Present-day WWTP discharges mainly cause eutrophication and subsequent side effects and low nutrient-retention efficiencies relative to the high nutrient concentrations and loads of impacted streams. Our results highlight the need for efficient tertiary treatment of wastewater and for the refinement of agricultural practices to reduce diffuse nutrient loadings. We found evidence that even efficiently treated wastewater can have extensive effects on stream ecosystem structure and function. Therefore, adequate dilution rates always should be considered when routing treated wastewater through lotic networks. Our findings on the response of key ecosystem variables to present-day WWTP loading underline the importance of scientifically based stream management.


Scientific Reports | 2015

Global effects of agriculture on fluvial dissolved organic matter

Daniel Graeber; Iola G. Boëchat; Francisco Encina-Montoya; Carlos Esse; Jörg Gelbrecht; Guillermo Goyenola; Björn Gücker; Marlen Heinz; Brian Kronvang; Mariana Meerhoff; Jorge Nimptsch; Martin T. Pusch; Ricky C. S. Silva; Daniel von Schiller; Elke Zwirnmann

Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.


Environmental Pollution | 2013

Impacts of fish farm pollution on ecosystem structure and function of tropical headwater streams.

Rodrigo dos Santos Rosa; Anna Carolina Fornero Aguiar; Iola G. Boëchat; Björn Gücker

We investigated the impacts of effluent discharge from small flow-through fish farms on stream water characteristics, the benthic invertebrate community, whole-system nitrate uptake, and ecosystem metabolism of three tropical headwater streams in southeastern Brazil. Effluents were moderately, i.e. up to 20-fold enriched in particulate organic matter (POM) and inorganic nutrients in comparison to stream water at reference sites. Due to high dilution with stream water, effluent discharge resulted in up to 2.0-fold increases in stream water POM and up to 1.8-fold increases in inorganic nutrients only. Moderate impacts on the benthic invertebrate community were detected at one stream only. There was no consistent pattern of effluent impact on whole-stream nitrate uptake. Ecosystem metabolism, however, was clearly affected by effluent discharge. Stream reaches impacted by effluents exhibited significantly increased community respiration and primary productivity, stressing the importance of ecologically sound best management practices for small fish farms in the tropics.


FEMS Microbiology Ecology | 2011

Agricultural land-use affects the nutritional quality of stream microbial communities

Iola G. Boëchat; Angela Krüger; Alessandra Giani; Cleber Cunha Figueredo; Björn Gücker

We investigated how the lipid composition (fatty acids and sterols) of benthic microbial mats, which represent an important basal food resource for stream food webs, differs between tropical streams located in protected pristine and agricultural Cerrado savannah areas. The total microbial biomass and lipid composition differed significantly between pristine and agricultural streams in parallel with differences in water quality and hydrodynamic characteristics. Agricultural streams exhibited lower total biomass of benthic microbial mats than pristine streams. However, the higher concentrations of essential polyunsaturated fatty acids, such as linoleic acid (LIN, 18:2ω6), α-linolenic acid (ALA, 18:3ω3), and eicosapentaenoic acid (EPA, 20:5ω3), that were observed in agricultural streams suggest enhanced lipid complexity and a higher nutritional quality of the microbial community relative to pristine streams. Meanwhile, pristine stream microbial communities had higher total concentrations of saturated fatty acids and cholesterol than those of agricultural streams, reflecting their heterotrophic microbial communities. Moreover, stream morphotype and associated differences in the hydrodynamic characteristics affected the community composition and thereby also the lipid composition of microbial mats. Land-use-induced changes in the total biomass and lipid composition of microbial communities may affect the trophic transfer of energy in stream food webs, leading to changes in the composition and productivity of primary consumers and their predators, and thereby affecting stream ecosystem functioning.


Science of The Total Environment | 2014

Land-use impacts on fatty acid profiles of suspended particulate organic matter along a larger tropical river

Iola G. Boëchat; Angela Krüger; Ronaldo César Chaves; Daniel Graeber; Björn Gücker

Land-use change, such as agricultural expansion and urbanization, can affect riverine biological diversity and ecosystem functioning. Identifying the major stressors associated with catchment land-use change is a prerequisite for devising successful river conservation and restoration strategies. Here, we analyzed land-use effects on the fatty acid (FA) composition and concentrations in suspended particulate organic matter (SPOM) along a fourth-order tropical river, the Rio das Mortes. Thereby, we aimed at testing the potential of fatty acids in riverine suspended particulate organic matter (SPOM-FAs) as indicators of land-use change in tropical catchments, and at identifying major human impacts on the biochemical composition of SPOM, which represents an important basal energy and organic matter resource for aquatic consumers. River water SPOM and total FA concentrations ranged between 2.8 and 10.2mg dry weight(DW)L(-1) and between 130.6 and 268.2μg DW L(-1), respectively, in our study. Urbanization was the only land-use category correlating with both FA composition and concentrations, despite its low contribution to whole catchment (1.5-5.6%) and riparian buffer land cover (1.7-6.6%). Higher concentrations of saturated FAs, especially C16:0 and C18:0, which are the main components of domestic sewage, were observed at sampling stations downstream of urban centers, and were highly correlated to urbanization, especially within the 60m riparian buffer zone. Compared to water chemical characteristics (inorganic nutrients, dissolved oxygen, pH, and specific conductance) and river habitat structural integrity, FA variables exhibited a higher variability along the investigated river and were more strongly correlated to urban land use, suggesting that SPOM-FA profiles may be an efficient indicator of urban land-use impacts on larger tropical rivers. High total FA concentrations in the SPOM of urbanized tropical rivers may represent high-energy biochemical subsidies to food webs, potentially leading to changes in functional ecosystem characteristics, such as bacterial and suspension-feeder production.


Science of The Total Environment | 2016

Urbanization and agriculture increase exports and differentially alter elemental stoichiometry of dissolved organic matter (DOM) from tropical catchments

Björn Gücker; Ricky C. S. Silva; Daniel Graeber; José Alberto Fernandez Monteiro; Iola G. Boëchat

Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts.


Water Air and Soil Pollution | 2012

High Variability in Sediment Characteristics of a Neotropical Stream Impacted by Surface Mining and Gully Erosion

Francisco L. Nascimento; Iola G. Boëchat; Alexandre Oliveira Teixeira; Björn Gücker

This study examined patterns of stream sediment granulometry, organic matter (OM) and metal concentration, and surface water characteristics in a catchment in the Brazilian Iron Quadrangle that is highly impacted by surface iron mining and gully erosion. Sediment granulometry indicated fine sediment deposition at impacted stream sites, i.e., tendencies towards bimodal particle size distributions with an additional peak in the sand fraction at impacted stream sites that did not occur at pristine reference sites, as well as towards smaller mean sediment particle sizes at impacted sites than at reference sites. Impacted sites also had significantly lower sediment OM contents than reference sites. Sediment heavy metal and arsenic concentrations did not differ between impacted and reference sites and were generally below published target or threshold effect concentrations. Impacts on surface water characteristics occurred only locally at a site that received tailings pond effluent from an iron mine and had very low pH and conductivity values. Sediment characteristics exhibited substantial spatial variability in the studied tropical catchment, showing that land use impacts can hardly be detected in routine monitoring and impact assessment studies that adopt a before–after control-impact approach and do not consider pristine reference streams. These results underline the importance of high-resolution and long-term sediment monitoring as well as integrated basin-scale sediment management programs.


Environmental Chemistry | 2012

Dialysis is superior to anion exchange for removal of dissolved inorganic nitrogen from freshwater samples prior to dissolved organic nitrogen determination

Daniel Graeber; Björn Gücker; Elke Zwirnmann; Brian Kronvang; Christoph Weih; Jörg Gelbrecht

Environmental context Aquatic ecosystem health may be adversely affected by dissolved organic nitrogen pollution, and accurate analytical techniques are needed to assess these effects. Our study shows that dialysis is the best sample pre-treatment technique to increase the accuracy of dissolved organic nitrogen determination. It will improve analysis and understanding of the role of dissolved organic nitrogen in the nitrogen cycle of affected aquatic ecosystems. Abstract Dissolved organic nitrogen (DON) is usually determined as the difference between total dissolved nitrogen (TDN) and dissolved inorganic nitrogen (DIN). When applying this approach to samples with high DIN concentrations, there is a risk that small relative errors in TDN and DIN measurements may propagate into high absolute errors of the determined DON concentration. To reduce such errors, two pre-treatment methods have been suggested for the removal of DIN before the determination of DON: anion-exchange pre-treatment (AEP) and dialysis pre-treatment (DP). In this study, we tested the suitability of AEP and DP for DIN removal in order to increase the accuracy of DON determination of freshwater samples. The AEP performed well for standard compounds, yielding high dissolved organic carbon (DOC) recovery rates and >99 % removal of nitrate, whereas DON recovery rates varied and no removal occurred for ammonium and nitrite. However, AEP proved not to be suitable for natural samples, as it removed 36–74 % DOC and up to 83 % DON. In contrast, after 72 h of DP, 17–32 % DOC and DON had been removed from the natural samples, whereas >98 % nitrate was removed in all but one case, and >87 % of the ammonium and nitrite were removed. Moreover, we found that DP results in a significant increase in DON determination accuracy. In conclusion, DP is a useful measure to increase DON determination accuracy in natural freshwater samples with high DIN-to-TDN ratios, whereas AEP is not recommended for DON determination of natural freshwater samples.


Environmental Science and Pollution Research | 2015

Benthic invertebrate density, biomass, and instantaneous secondary production along a fifth-order human-impacted tropical river.

Anna Carolina Fornero Aguiar; Björn Gücker; Mario Brauns; Sandra Hille; Iola G. Boëchat

The aim of this study was to assess land use effects on the density, biomass, and instantaneous secondary production (IP) of benthic invertebrates in a fifth-order tropical river. Invertebrates were sampled at 11 stations along the Rio das Mortes (upper Rio Grande, Southeast Brazil) in the dry and the rainy season 2010/2011. Invertebrates were counted, determined, and measured to estimate their density, biomass, and IP. Water chemical characteristics, sediment heterogeneity, and habitat structural integrity were assessed in parallel. Total invertebrate density, biomass, and IP were higher in the dry season than those in the rainy season, but did not differ significantly among sampling stations along the river. However, taxon-specific density, biomass, and IP differed similarly among sampling stations along the river and between seasons, suggesting that these metrics had the same bioindication potential. Variability in density, biomass, and IP was mainly explained by seasonality and the percentage of sandy sediment in the riverbed, and not directly by urban or agricultural land use. Our results suggest that the consistently high degradation status of the river, observed from its headwaters to mouth, weakened the response of the invertebrate community to specific land use impacts, so that only local habitat characteristics and seasonality exerted effects.


Science of The Total Environment | 2018

Going with the flow: Planktonic processing of dissolved organic carbon in streams

Daniel Graeber; Jane Rosenstand Poulsen; Marlen Heinz; Jes J. Rasmussen; Dominik Zak; Björn Gücker; Brian Kronvang; Norbert Kamjunke

A large part of the organic carbon in streams is transported by pulses of terrestrial dissolved organic carbon (tDOC) during hydrological events, which is more pronounced in agricultural catchments due to their hydrological flashiness. The majority of the literature considers stationary benthic biofilms and hyporheic biofilms to dominate uptake and processing of tDOC. Here, we argue for expanding this viewpoint to planktonic bacteria, which are transported downstream together with tDOC pulses, and thus perceive them as a less variable resource relative to stationary benthic bacteria. We show that pulse DOC can contribute significantly to the annual DOC export of streams and that planktonic bacteria take up considerable labile tDOC from such pulses in a short time frame, with the DOC uptake being as high as that of benthic biofilm bacteria. Furthermore, we show that planktonic bacteria efficiently take up labile tDOC which strongly increases planktonic bacterial production and abundance. We found that the response of planktonic bacteria to tDOC pulses was stronger in smaller streams than in larger streams, which may be related to bacterial metacommunity dynamics. Furthermore, the response of planktonic bacterial abundance was influenced by soluble reactive phosphorus concentration, pointing to phosphorus limitation. Our data suggest that planktonic bacteria can efficiently utilize tDOC pulses and likely determine tDOC fate during downstream transport, influencing aquatic food webs and related biochemical cycles.

Collaboration


Dive into the Björn Gücker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Brauns

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge