Daniel Graeber
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniel Graeber.
Science of The Total Environment | 2012
Daniel Graeber; Jörg Gelbrecht; Martin T. Pusch; Christine Anlanger; Daniel von Schiller
Dissolved organic matter (DOM) is an important part of the global carbon cycle and significantly influences aquatic ecosystem functions. Recent studies suggest that its amount and composition in freshwaters may be altered by agricultural land use, whereby the influence of preceding in-stream production and processing is not clear. To assess the land use effect on DOM amount and composition for the export from terrestrial to freshwater systems at the land-water interface, we sampled headwater streams draining agricultural and near-pristine catchments (forested and wetland) in the North German plains. To account for spatial and seasonal variation, we conducted a screening of DOM amount (53 sites) and composition (42 sites), and conducted bi-weekly samplings to investigate seasonal variation at eight sites over one year. Concentrations of dissolved organic carbon (DOC) were significantly higher for agricultural and wetland catchments than for forested catchments. Moreover, DOC loads exhibited higher seasonal variation for agricultural and wetland catchments than for forested catchments, which was due to higher variation in discharge. Parallel Factor Analysis revealed that the composition of DOM in agricultural catchments was significantly different from the other studied catchment types, and was characterized by low redox state and high structural complexity. Moreover, a gradient from protein- to humic-like fluorescence significantly separated forested from agricultural and wetland catchments. The contribution of humic-like DOM was strongly and positively related to DOC concentration, suggesting a mechanistic coupling of both. The effects of land use on patterns of DOC concentration and DOM composition were consistent across seasons, implying that land use strongly regulates DOM export. Overall, this study clearly shows the seasonally independent importance of agricultural land use for the amount and composition of DOM fluxes from the terrestrial zone to surface waters. These altered fluxes may affect ecosystem metabolism and health of agricultural headwaters and downstream situated aquatic ecosystems.
Aquatic Sciences | 2011
D. von Schiller; Vicenç Acuña; Daniel Graeber; Eugènia Martí; Miquel Ribot; Sergi Sabater; Xisca Timoner; Klement Tockner
Temporary streams are a dominant surface water type in the Mediterranean region. As a consequence of their hydrologic regime, these ecosystems contract and fragment as they dry, and expand after rewetting. Global change leads to a rapid increase in the extent of temporary streams, and more and more permanent streams are turning temporary. Consequently, there is an urgent need to better understand the effects of flow intermittency on the biogeochemistry and ecology of stream ecosystems. Our aim was to investigate how stream nutrient availability varied in relation to ecosystem contraction, fragmentation and expansion due to hydrologic drying and rewetting. We quantified the temporal and spatial changes in dissolved nitrogen (N) and phosphorus (P) concentrations along a reach of a temporary Mediterranean forest stream during an entire contraction–fragmentation–expansion hydrologic cycle. We observed marked temporal changes in N and P concentrations, in the proportion of organic and inorganic forms as well as in stoichiometric ratios, reflecting shifts in the relative importance of in-stream nutrient processing and external nutrient sources. In addition, the spatial heterogeneity of N and P concentrations and their ratios increased substantially with ecosystem fragmentation, reflecting the high relevance of in-stream processes when advective transport was lost. Overall, changes were more pronounced for N than for P. This study emphasizes the significance of flow intermittency in regulating stream nutrient availability and its implications for temporary stream management. Moreover, our results point to potential biogeochemical responses of these ecosystems in more temperate regions under future water scarcity scenarios.
Environmental Science & Technology | 2015
Marlen Heinz; Daniel Graeber; Dominik Zak; Elke Zwirnmann; Joerg Gelbrecht; Martin T. Pusch
Agricultural management practices promote organic matter (OM) turnover and thus alter both the processing of dissolved organic matter (DOM) in soils and presumably also the export of DOM to headwater streams, which intimately connect the terrestrial with the aquatic environment. Size-exclusion chromatography, in combination with absorbance and emission matrix fluorometry, was applied to assess how agricultural land use alters the amount and composition of DOM, as well as dissolved organic nitrogen (DON) forms in headwater streams, including temporal variations, in a temperate region of NE Germany. By comparing six agriculturally and six forest-impacted headwater streams, we demonstrated that agriculture promotes increased DOC and DON concentrations, entailing an even more pronounced effect on DON. The major part of DOC and DON in agricultural and forest reference streams is exported in the form of humic-like material with high molecular weight, which indicates terrestrial, i.e., allochthonous sources. As an obvious difference in agricultural streams, the contribution of DOC and particularly DON occurring in the form of nonhumic high-molecular-weight, presumably proteinous material is clearly elevated. Altogether, DOM in agricultural headwaters is mainly complex-soil-derived and aromatic material with a low C:N ratio, which is more microbial processed than its counterpart from forest reference catchments. Our results emphasize the importance of agricultural land use on DOM loss from soils and identify agricultural soils as important DOC and particularly DON sources to headwater streams.
Scientific Reports | 2015
Daniel Graeber; Iola G. Boëchat; Francisco Encina-Montoya; Carlos Esse; Jörg Gelbrecht; Guillermo Goyenola; Björn Gücker; Marlen Heinz; Brian Kronvang; Mariana Meerhoff; Jorge Nimptsch; Martin T. Pusch; Ricky C. S. Silva; Daniel von Schiller; Elke Zwirnmann
Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.
Science of The Total Environment | 2015
Jorge Nimptsch; Stefan Woelfl; Sebastian Osorio; Jose Valenzuela; Paul Ebersbach; Wolf von Tuempling; Rodrigo Palma; Francisco Encina; David Figueroa; Norbert Kamjunke; Daniel Graeber
Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradability are unknown. The aim of this study was thus to investigate the inputs of anthropogenic DOM from land-based aquaculture to the predominantly pristine river systems of North Patagonia. We hypothesized, that i) DOM exported from land-based aquaculture mainly consists of protein-like fluorescence (tyrosine and tryptophan) released from fish feces and food remains, and that ii) this DOM is highly degradable and therefore rapidly turned-over within the receiving streams. In the North Patagonian region we conducted a screening of ten land-based aquacultures and an intensive sampling campaign for one aquaculture. This was combined with longitudinal transects and a degradation experiment in order to couple the composition of DOM exported from land-based aquacultures to its degradability in streams. We measured dissolved organic carbon (DOC) concentration by high-temperature catalytic oxidation and DOM composition by fluorescence spectroscopy and parallel factor analysis. In the effluent of the ten screened aquacultures and in the repeated sampling of one aquaculture, we consistently found an increase of DOC concentrations and a dominance of protein-like fluorescence. The protein-like fluorescence rapidly disappeared downstream of the aquacultures, and in the degradation experiment. 21% of the DOC export from the repeatedly sampled aquaculture resulted from food addition and 76% from fish production. We conclude that large amounts of degradable DOM are exported from land-based aquacultures. This probably has strong effects on the ecological structure and function of North Patagonian streams, and similarly affected streams worldwide.
Science of The Total Environment | 2014
Iola G. Boëchat; Angela Krüger; Ronaldo César Chaves; Daniel Graeber; Björn Gücker
Land-use change, such as agricultural expansion and urbanization, can affect riverine biological diversity and ecosystem functioning. Identifying the major stressors associated with catchment land-use change is a prerequisite for devising successful river conservation and restoration strategies. Here, we analyzed land-use effects on the fatty acid (FA) composition and concentrations in suspended particulate organic matter (SPOM) along a fourth-order tropical river, the Rio das Mortes. Thereby, we aimed at testing the potential of fatty acids in riverine suspended particulate organic matter (SPOM-FAs) as indicators of land-use change in tropical catchments, and at identifying major human impacts on the biochemical composition of SPOM, which represents an important basal energy and organic matter resource for aquatic consumers. River water SPOM and total FA concentrations ranged between 2.8 and 10.2mg dry weight(DW)L(-1) and between 130.6 and 268.2μg DW L(-1), respectively, in our study. Urbanization was the only land-use category correlating with both FA composition and concentrations, despite its low contribution to whole catchment (1.5-5.6%) and riparian buffer land cover (1.7-6.6%). Higher concentrations of saturated FAs, especially C16:0 and C18:0, which are the main components of domestic sewage, were observed at sampling stations downstream of urban centers, and were highly correlated to urbanization, especially within the 60m riparian buffer zone. Compared to water chemical characteristics (inorganic nutrients, dissolved oxygen, pH, and specific conductance) and river habitat structural integrity, FA variables exhibited a higher variability along the investigated river and were more strongly correlated to urban land use, suggesting that SPOM-FA profiles may be an efficient indicator of urban land-use impacts on larger tropical rivers. High total FA concentrations in the SPOM of urbanized tropical rivers may represent high-energy biochemical subsidies to food webs, potentially leading to changes in functional ecosystem characteristics, such as bacterial and suspension-feeder production.
Freshwater Science | 2014
Sandra Hille; Esben Astrup Kristensen; Daniel Graeber; Tenna Riis; Nina K. Jørgensen; Annette Baattrup-Pedersen
Abstract Small, permanent streams are at risk of becoming stagnant or intermittent because of hydrological changes induced by climate change, which can be further intensified by anthropogenic disruptions, such as water abstraction. Macroinvertebrate communities are vulnerable to such changes because they depend on stream hydromorphological regime. We conducted a fully controlled field experiment in 1 impacted and 1 unimpacted Danish lowland stream with contrasting nutrient availability. We used dams and diversions to create short-term (2–10 wk) stagnant and drought conditions, and we installed pools in the drought area to test their value as refugia for benthic macroinvertebrates. After 2 wk, community composition had changed significantly in all treatments in both streams. The abundance of Chironomidae increased and the abundance of mayflies (Baetis rhodani), stoneflies (Amphinemura standfussi, Leuctra nigra), caddisflies (Silo pallipes, Sericostoma personatum), the amphipod Gammarus pulex, and some Diptera taxa (Simuliidae, Dicranota sp.) decreased relative to the control. Diversity and total abundance did not change in the stagnant or drought treatments, so we do not consider these variables sensitive to effects of short-term flow reductions. Diversity decreased (unimpacted stream) or was not affected (impacted stream) in pools relative to the drought treatment. Thus, pools did not act as a substantial refugium for macroinvertebrates under extreme low-flow conditions. Current velocity and amount of deposited organic material explained most of the change in the macroinvertebrate community. Nutrient availability did not influence the response of the macroinvertebrate community to the treatments, probably because the physicochemical changes were exacerbated in the impacted stream and outweighed the expected higher resilience of this community. Our results clearly demonstrate that short-term stagnation and droughts in lowland streams can cause strong alteration of species composition.
Environmental Science & Technology | 2016
Peter Wiberg-Larsen; Daniel Graeber; Esben Astrup Kristensen; Annette Baattrup-Pedersen; Nikolai Friberg; Jes J. Rasmussen
We exposed 34 species of stream macroinvertebrates, representing 29 families, to a 90 min pulse of the pyrethroid λ-cyhalothrin. For 28 of these species, no pyrethroid ecotoxicity data exist. We recorded mortality rates 6 days post-exposure, and the behavioral response to pyrethroid exposure was recorded using automated video tracking. Most arthropod species showed mortality responses to the exposure concentrations (0.01-10 μg L(-1)), whereas nonarthropod species remained unaffected. LC50 varied by at least a factor of 1000 among arthropod species, even within the same family. This variation could not be predicted using ecotoxicity data from closely related species, nor using species-specific indicator values from traditional ecological quality indices. Moreover, LC50 was not significantly correlated to effect thresholds for behavioral responses. Importantly, however, the measured surface area-weight ratio and the preference for coarse substrates significantly influenced the LC50 for arthropod species, with the combination of small individuals and strong preference for coarse substrates indicating higher pyrethroid sensitivity. Our study highlights that existing pesticide ecotoxicity data should be extrapolated to untested species with caution and that actual body size (not maximum potential body size, as is usually available in traits databases) and habitat preference are central parameters determining species sensitivities to pyrethroids.
Science of The Total Environment | 2016
Björn Gücker; Ricky C. S. Silva; Daniel Graeber; José Alberto Fernandez Monteiro; Iola G. Boëchat
Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts.
Scientific Reports | 2017
Norbert Kamjunke; Jorge Nimptsch; Mourad Harir; Peter Herzsprung; Philippe Schmitt-Kopplin; Thomas R. Neu; Daniel Graeber; Sebastian Osorio; Jose Valenzuela; Juan Carlos Reyes; Stefan Woelfl; Norbert Hertkorn
Aquacultures are of great economic importance worldwide but pollute pristine headwater streams, lakes, and estuaries. However, there are no in-depth studies of the consequences of aquacultures on dissolved organic matter (DOM) composition and structure. We performed a detailed molecular level characterization of aquaculture DOM quality and its bacterial degradation using four salmon aquacultures in Chile. Fluorescence measurements, ultrahigh-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy of the DOM revealed specific and extensive molecular alterations caused by aquacultures. Aquacultures released large quantities of readily bioavailable metabolites (primarily carbohydrates and peptides/proteins, and lipids), causing the organic matter downstream of all the investigated aquacultures to deviate strongly from the highly processed, polydisperse and molecularly heterogeneous DOM found in pristine rivers. However, the upstream individual catchment DOM signatures remained distinguishable at the downstream sites. The benthic algal biovolume decreased and the bacterial biovolume and production increased downstream of the aquacultures, shifting stream ecosystems to a more heterotrophic state and thus impairing the ecosystem health. The bacterial DOM degradation rates explain the attenuation of aquaculture DOM within the subsequent stream reaches. This knowledge may aid the development of improved waste processing facilities and may help to define emission thresholds to protect sensitive stream ecosystems.