Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Björn Studer is active.

Publication


Featured researches published by Björn Studer.


Journal of Hazardous Materials | 2010

Effects of three amendments on extractability and fractionation of Pb, Cu, Ni and Sb in two shooting range soils.

Héctor M. Conesa; M. Wieser; M. Gasser; Kerstin Hockmann; Michael W.H. Evangelou; Björn Studer; Rainer Schulin

Contamination of shooting range soils with toxic trace elements, in particular Pb and Sb, is of increasing environmental concern worldwide. We studied the extractability of Sb, and other metals in two shooting range soils: a calcareous soil (pH 8) with low organic carbon (0.5%) and a non-calcareous soil (pH 6.3) with elevated organic carbon content (5%). Both soils contained total concentrations of around 500 mg kg(-1) Pb, 65 mg kg(-1) Cu, 100 mg kg(-1) Zn and 20 mg kg(-1) Sb. We tested the effects of Ca(OH)(2), phosphate and sodium humate amendments on metals and Sb extractability. Extracts with H(2)O and NaNO(3) contained 0.02-0.05% of the total Zn and Pb; 0.1-0.5% of total Ni and Cu and approximately 1% of total Sb. Sequential extraction procedure of Zeien and Brümmer resulted in similar percentages for the sum of the two most labile fractions (F1+F2) in two soils: 10% Pb, and 15-20% Sb. Water and NaNO(3)-extractable Sb concentrations increased after phosphate addition, but were not affected by the addition of sodium humate. The results show that leaching of Sb from shooting ranges into ground and surface waters may generate a serious environmental risk under widely different soils conditions.


Water Air and Soil Pollution | 1993

Transport of volatile chlorinated hydrocarbons in unsaturated aggregated media

Thomas Gimmi; Hannes Flühler; Björn Studer; Anders Rasmuson

Transport of volatile hydrocarbons in soils is largely controlled by interactions of vapours with the liquid and solid phase. Sorption on solids of gaseous or dissolved compounds may be important. Since the contact time between a chemical and a specific sorption site can be rather short, kinetic or mass-transfer resistance effects may be relevant.An existing mathematical model describing advection and diffusion in the gas phase and diffusional transport from the gaseous phase into an intra-aggregate water phase is modified to include linear kinetic sorption on gas-solid and water-solid interfaces. The model accounts for kinetic mass transfer between all three phases in a soil. The solution of the Laplace-transformed equations is inverted numerically.We performed transient column experiments with 1,1,2-Trichloroethane, Trichloroethylene, and Tetrachloroethylene using air-dry solid and water-saturated porous glass beads. The breakthrough curves were calculated based on independently estimated parameters. The model calculations agree well with experimental data. The different transport behaviour of the three compounds in our system primarily depends on Henrys constants.


Chemosphere | 2015

Antimony retention and release from drained and waterlogged shooting range soil under field conditions

Kerstin Hockmann; Susan Tandy; Markus Lenz; René Reiser; Héctor M. Conesa; Martin Keller; Björn Studer; Rainer Schulin

Many soils polluted by antimony (Sb) are subject to fluctuating waterlogging conditions; yet, little is known about how these affect the mobility of this toxic element under field conditions. Here, we compared Sb leaching from a calcareous shooting range soil under drained and waterlogged conditions using four large outdoor lysimeters. After monitoring the leachate samples taken at bi-weekly intervals for >1.5 years under drained conditions, two of the lysimeters were subjected to waterlogging with a water table fluctuating according to natural rainfall water infiltration. Antimony leachate concentrations under drained conditions showed a strong seasonal fluctuation between 110 μg L(-1) in summer and <40 μg L(-1) in winter, which closely correlated with fluctuations in dissolved organic carbon (DOC) concentrations. With the development of anaerobic conditions upon waterlogging, Sb in leachate decreased to 2-5 μg L(-1) Sb and remained stable at this level. Antimony speciation measurements in soil solution indicated that this decrease in Sb(V) concentrations was attributable to the reduction of Sb(V) to Sb(III) and the stronger sorption affinity of the latter to iron (Fe) (hydr)oxide phases. Our results demonstrate the importance of considering seasonal and waterlogging effects in the assessment of the risks from Sb-contaminated sites.


Journal of Hazardous Materials | 2012

Assessment of suitability of tree species for the production of biomass on trace element contaminated soils.

Michael W.H. Evangelou; Annabelle Deram; Alexander Gogos; Björn Studer; Rainer Schulin

To alleviate the demand on fertile agricultural land for production of bioenergy, we investigated the possibility of producing biomass for bioenergy on trace element (TE) contaminated land. Soil samples and plant tissues (leaves, wood and bark) of adult willow (Salix sp.), poplar (Populus sp.), and birch (Betula pendula) trees were collected from five contaminated sites in France and Germany and analysed for Zn, Cd, Pb, Cu, Ca, and K. Cadmium concentration in tree leaves were correlated with tree species, whereas Zn concentration in leaves was site correlated. Birch revealed significantly lower leaf Cd concentrations (1.2-8.9 mg kg(-1)) than willow and poplar (5-80 mg kg(-1)), thus posing the lowest risk for TE contamination of surrounding areas. Birch displayed the lowest bark concentrations for Ca (2300-6200 mg kg(-1)) and K (320-1250 mg kg(-1)), indicating that it would be the most suitable tree species for fuel production, as high concentrations of K and Ca decrease the ash melting point which results in a reduced plant lifetime. Due to higher TE concentrations in bark compared to wood a small bark proportion in relation to the trunk is desirable. In general the bark proportion was reduced with the tree age. In summary, birch was amongst the investigated species the most suitable for biomass production on TE contaminated land.


Science of The Total Environment | 2018

Antimony mobility during prolonged waterlogging and reoxidation of shooting range soil : a field experiment

Susan Tandy; Kerstin Hockmann; Martin Keller; Björn Studer; Andreas Papritz; Rainer Schulin

Due to its increasing anthropogenic use, antimony (Sb) soil pollution is of growing concern. Many soils experience fluctuating hydrological conditions, yet very little is known about how this affects the mobility of this toxic element under field conditions. In this study, we performed an outdoor lysimeter experiment to compare Sb leaching from a calcareous shooting range soil under drained and prolonged waterlogged conditions (1.5-2.75years), followed by a 1.5-year period of soil reoxidation. Waterlogging reduced Sb leachate concentrations significantly compared to drained conditions and soil solution concentrations decreased with depth due to the increased reducing conditions. This was attributed to the reduction of Sb(V) to Sb(III) and the more effective sorption of the latter to metal (hydr)oxides. However, reductive dissolution of iron (hydr)oxides released Sb into solution, although Sb concentrations never exceeded those in the drained lysimeters. On reoxidation of the soil, Sb was remobilized, but even after 1.5years under reoxidised conditions, Sb leachate and soil solution concentrations still remained below those of the drained lysimeters. Our results demonstrate that prolonged waterlogging may have an irreversible effect on Sb leachate and soil solution concentrations.


Environmental Pollution | 2018

Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil

Kerstin Hockmann; Susan Tandy; Björn Studer; Michael W.H. Evangelou; Rainer Schulin

Shooting ranges polluted by antimony (Sb), lead (Pb), copper (Cu) and zinc (Zn) are used for animal grazing, thus pose a risk of contaminants entering the food chain. Many of these sites are subject to waterlogging of poorly drained soils. Using field lysimeter experiments, we compared Sb, Pb, Cu and Zn uptake by four common pasture plant species (Lolium perenne, Trifolium repens, Plantago lanceolata and Rumex obtusifolius) growing on a calcareous shooting range soil under waterlogged and drained conditions. To monitor seasonal trends, the same plants were collected at three times over the growing season. Additionally, variations in soil solution concentrations were monitored at three depths over the experiment. Under reducing conditions, soluble Sb concentrations dropped from ∼50 μg L-1 to ∼10 μg L-1, which was attributed to the reduction of Sb(V) to Sb(III) and the higher retention of the trivalent species by the soil matrix. Shoot Sb concentrations differed by a factor of 60 between plant species, but remained at levels <0.3 μg g-1. Despite the difference in soil solution concentrations between treatments, total Sb accumulation in shoots for plants collected on the waterlogged soil did not change, suggesting that Sb(III) was much more available for plant uptake than Sb(V), as only 10% of the total Sb was present as Sb(III). In contrast to Sb, Pb, Cu and Zn soil solution concentrations remained unaffected by waterlogging, and shoot concentrations were significantly higher in the drained treatment for many plant species. Although showing an increasing trend over the season, shoot metal concentrations generally remained below regulatory values for fodder plants (40 μg g-1 Pb, 150 μg g-1 Zn, 15-35 μg g-1 Cu), indicating a low risk of contaminant transfer into the food chain under both oxic and anoxic conditions for the type of shooting range soil investigated in this study.


Hydrology and Earth System Sciences | 2016

A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation

Jana von Freyberg; Björn Studer; James W. Kirchner


Journal of Soils and Sediments | 2012

A critical assessment of soil amendments (slaked lime/acidic fertilizer) for the phytomanagement of moderately contaminated shooting range soils

Héctor M. Conesa; Mirjam Wieser; Björn Studer; María Nazaret González-Alcaraz; Rainer Schulin


Ecological Engineering | 2011

Effects of vegetation and fertilizer on metal and Sb plant uptake in a calcareous shooting range soil

Héctor M. Conesa; M. Wieser; Björn Studer; Rainer Schulin


Hydrology and Earth System Sciences Discussions | 2018

Studying catchment storm response using event and pre-event water volumes as fractions of precipitation rather than discharge

Jana von Freyberg; Björn Studer; James W. Kirchner

Collaboration


Dive into the Björn Studer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Gogos

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge