Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael W.H. Evangelou is active.

Publication


Featured researches published by Michael W.H. Evangelou.


Critical Reviews in Plant Sciences | 2009

The phytomanagement of trace elements in soil.

Brett Robinson; Gary Bañuelos; Héctor M. Conesa; Michael W.H. Evangelou; Rainer Schulin

Trace elements (TEs) occur at low concentrations (<1000 mg kg −1) in organisms, yet they have a large biological effect, both as essential nutrients and environmental contaminants. Phytomanagement describes the manipulation of soil-plant systems to affect the fluxes of TEs in the environment with the goal of remediating contaminated soils, recovering valuable metals, or increasing micronutrient concentrations in crops. Phytomanagement includes all biological, chemical, and physical technologies employed on a vegetated site. Successful phytomanagement should either cost less than other remediation or fortification technologies, or be a profitable operation, by producing valuable plant biomass products. This may include bioenergy or timber production on contaminated land, a practice that does not reduce food production. We review the components of phytomanagement and the underlying biogeochemical processes, with a view to elucidating situations where this technology may be successfully applied and identifying future research needs. Many full-scale operations have proved the efficacy of plants to reduce contaminant mobility in soils (phytostabilization), particularly when used in combination with other technologies. As a stand-alone technology, the oft-touted use of plants to extract TEs from contaminated soils (phytoextraction) or low-grade ore bodies (phytomining) is unsuitable for most, if not all, sites due to low-extraction rates and problems caused by site heterogeneity, the limited rooting depth of plants and the presence of contaminant mixtures. Unsubstantiated claims about phytoextraction have tarnished the reputation of all “phyto” technologies. Nevertheless, phytoextraction, as part of a larger environmental toolkit, has a role in phytomanagement. The growth, or lack thereof, of profitable companies that provide phytomanagement will indicate its value. A critical knowledge gap in phytomanagement is the integration of the processes that affect plant–TE interactions and the biophysical processes affecting TE fluxes in the root zone, especially the effect of roots on contaminant fluxes.


Chemosphere | 2010

Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS)

Erika Fässler; Michael W.H. Evangelou; Brett Robinson; Rainer Schulin

The use of plants for phytoextraction of heavy metals from contaminated soil is limited by the ability of the plants to grow on these soils and take up the target metals, as well as by the availability of the metals for plant uptake in the soil solution. The hypotheses of this study were that the growth-promoting phytohormone auxin (indole-3-acetic acid, IAA) can alleviate toxic effects of metals on plants and increase metal phytoextraction in combination with the biodegradable chelating agent ethylene diamine disuccinic acid (EDDS). To test these hypotheses we performed two sets of experiments with sunflowers (Helianthusannuus L.) in hydroponic solution. In the first set of experiments, five IAA concentrations (0, 10(-12), 10(-11), 10(-10), 10(-9)M) were applied in combination with Pb (2.5 microM) or Zn (15 microM). In the second set of experiments we applied combinations of IAA (0 or 10(-10)M) and EDDS (0 or 500 microM) to Pb or Zn-stressed sunflowers. Root and shoot growth of metal-stressed plants were most effectively increased with 10(-10)M IAA, and also the extraction of both metals was significantly increased at this treatment level. IAA reduced the negative metal effects, such as reduced shoot and root dry weight, root length, root volume and root surface area. EDDS significantly decreased metal uptake by the plants, thus reducing metal stress and promoting plant growth. The combined application of IAA with EDDS significantly increased Zn uptake in comparison to EDDS only treated plants. The experiments indicate that IAA can alleviate toxic effects of Pb and Zn on plant root and shoot growth and can in combination with chelants such as EDDS increase the phytoextraction potential of these plants.


The Scientific World Journal | 2012

A Critical View of Current State of Phytotechnologies to Remediate Soils: Still a Promising Tool?

Héctor M. Conesa; Michael W.H. Evangelou; Brett Robinson; Rainer Schulin

Phytotechnologies are often shown as an emerging tool to remediate contaminated soils. Research in this field has resulted in many important findings relating to plant and soil sciences. However, there have been scant private and public investments and little commercial success with this technology. Here, we investigate the barriers to the adoption of phytotechnologies and determine whether it is still a fertile area for future research. The terminology used in phytotechnologies includes a confusing mish-mash of terms relating to concepts and processes increasing the difficulty of developing a unique commercial image. We argue that the commercial success of phytotechnologies depends on the generation of valuable biomass on contaminated land, rather than a pure remediation technique that may not compare favourably with the costs of inaction or alternative technologies. Valuable biomass includes timber, bioenergy, feedstock for pyrolosis, biofortified products, or ecologically important species.


Journal of Hazardous Materials | 2010

Effects of three amendments on extractability and fractionation of Pb, Cu, Ni and Sb in two shooting range soils.

Héctor M. Conesa; M. Wieser; M. Gasser; Kerstin Hockmann; Michael W.H. Evangelou; Björn Studer; Rainer Schulin

Contamination of shooting range soils with toxic trace elements, in particular Pb and Sb, is of increasing environmental concern worldwide. We studied the extractability of Sb, and other metals in two shooting range soils: a calcareous soil (pH 8) with low organic carbon (0.5%) and a non-calcareous soil (pH 6.3) with elevated organic carbon content (5%). Both soils contained total concentrations of around 500 mg kg(-1) Pb, 65 mg kg(-1) Cu, 100 mg kg(-1) Zn and 20 mg kg(-1) Sb. We tested the effects of Ca(OH)(2), phosphate and sodium humate amendments on metals and Sb extractability. Extracts with H(2)O and NaNO(3) contained 0.02-0.05% of the total Zn and Pb; 0.1-0.5% of total Ni and Cu and approximately 1% of total Sb. Sequential extraction procedure of Zeien and Brümmer resulted in similar percentages for the sum of the two most labile fractions (F1+F2) in two soils: 10% Pb, and 15-20% Sb. Water and NaNO(3)-extractable Sb concentrations increased after phosphate addition, but were not affected by the addition of sodium humate. The results show that leaching of Sb from shooting ranges into ground and surface waters may generate a serious environmental risk under widely different soils conditions.


Journal of Environmental Management | 2012

Accumulation of Sb, Pb, Cu, Zn and Cd by various plants species on two different relocated military shooting range soils

Michael W.H. Evangelou; Kerstin Hockmann; Rasesh Pokharel; Alfred Jakob; Rainer Schulin

Annually, more than 400 t Pb and 10 t Sb enter Swiss soils at some 2000 military shooting ranges. After the decommission of military shooting ranges, heavily contaminated soils (>2000 mg kg(-1) Pb) are landfilled or processed by soil washing, whereas for soils with less contamination, alternate strategies are sought. Although the use of military shooting ranges for grazing in Switzerland is common practice, no assessment has been done about the uptake of Sb in plants and its subsequent potential intake by grazing animals. We determined the uptake of Sb, Pb, Cu, Zn and Cd in the aboveground biomass of nine plant species growing on a calcareous (Chur) and a weakly acidic (Losone) military shooting range soil in order to assess if grazing would be safe to employ on decommissioned military shooting ranges. The two soils did not differ in their total concentrations of Cu, Zn, Sb and Cd, they differed however in the total concentration of Pb. Additionally, their physical and chemical properties were significantly different. The accumulation of Zn, Cu, Cd and Pb in the shoots of all nine plant species remained below the Swiss tolerance values for fodder plants (150 mg kg(-1) Zn, 15-35 mg kg(-1) Cu, 40 mg kg(-1) Pb, and 1 mg kg(-1) Cd DW), with the only exception of Pb in Chenopodium album shoots which reached a concentration of 62 mg kg(-1) DW. Antimony concentrations were 1.5-2.6-fold higher in plants growing on the calcareous soil than on the weakly acidic soil. Considering Cu, Zn, Pb, Sb and Cd, all plants, with the exception C. album, would be suitable for grazing on similar shooting range soils.


Journal of Agricultural and Food Chemistry | 2016

Toward the Standardization of Biochar Analysis: The COST Action TD1107 Interlaboratory Comparison

Hans Jörg Bachmann; Thomas D. Bucheli; Alba Dieguez-Alonso; Daniele Fabbri; Heike Knicker; Hans-Peter Schmidt; Axel Ulbricht; Roland Becker; Alessandro Buscaroli; Diane Buerge; Andrew Cross; Dane Dickinson; Akio Enders; Valdemar I. Esteves; Michael W.H. Evangelou; Guido Fellet; K. Friedrich; Gabriel Gasco Guerrero; Bruno Glaser; Ulrich Michael Hanke; Kelly Hanley; Isabel Hilber; Dimitrios Kalderis; Jens Leifeld; Ondrej Masek; Jan Mumme; Marina Paneque Carmona; Roberto Calvelo Pereira; Frédéric Rees; Alessandro G. Rombolà

Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical-chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future.


Chemosphere | 2016

Effects of biochar on the transformation and earthworm bioaccumulation of organic pollutants in soil.

Jianqiang Gu; Wenqiang Zhou; Bingqi Jiang; Lianhong Wang; Yini Ma; Hongyan Guo; Rainer Schulin; Rong Ji; Michael W.H. Evangelou

Little is known about the effects of biochar on the fate and behavior of micropollutants in soil, especially in the presence of soil macrofauna. Using a 14C-tracer, we studied the fate of 2,4-dichlorophenol and phenanthrene, after 30 days in soil in the presence of a biochar (0-5%, dry weight) produced from China fir at 400 °C and/or the earthworm Metaphire guillelmi. Application of the biochar significantly reduced the degradation and mineralization of both pollutants and strongly increased the accumulation of their metabolites in soil. The earthworm had no significant effects on the degradation of parent molecules of the pollutants but it significantly reduced the mineralization of the pollutants independent of the presence of the biochar. Although at an application rate of <1% the biochar strongly sorbed both pollutants, it did not significantly decrease the bioaccumulation of free dichlorophenol and phenanthrene and their metabolites by the earthworm. Our results demonstrate the complex effects of biochar on the fate, transformation, and earthworm bioaccumulation of organic pollutants in soil. They show that biochar application may not be an appropriate strategy for treating soil contaminated with hydrophobic organic pollutants and underline the importance of soil-feeding earthworms in risk assessments of biochar effects on soil remediation.


Archive | 2015

Phytomanagement: Phytoremediation and the Production of Biomass for Economic Revenue on Contaminated Land

Michael W.H. Evangelou; Eleni G. Papazoglou; Brett Robinson; Rainer Schulin

Phytoremediation was developed as an alternative to “hard” soil remediation techniques such as incineration, soil washing, and land filling. However, it never managed to live up to its expectations, because of the low efficiency of phytoextraction for most soil contaminants resulting in long-term restrictions on land use. In recent years, phytomanagement was developed as an alternative approach. Phytomanagement is defined as the use of plants to reduce and control risks arising from soil pollution while contemporaneously making a profitable and sustainable use of this resource by producing marketable biomass. The development of phytomanagement coincided with the view that many contaminated soils can still represent a valuable resource that should be used sustainably. Worldwide, contaminated soils could be used for the production of bioenergy, timber, pulp, biochar, and even fodder products that are biofortified in essential trace elements such as zinc. This alleviates pressure on fertile soil and ideally improves the quality of contaminated soil over the long term. Monitoring of the contaminants is essential to ensure they remain immobile and are not dispersed as a result of using the produced biomass. Guidelines, thresholds, and restrictions must be considered when biomass is produced for certain purposes.


Journal of Hazardous Materials | 2012

Assessment of suitability of tree species for the production of biomass on trace element contaminated soils.

Michael W.H. Evangelou; Annabelle Deram; Alexander Gogos; Björn Studer; Rainer Schulin

To alleviate the demand on fertile agricultural land for production of bioenergy, we investigated the possibility of producing biomass for bioenergy on trace element (TE) contaminated land. Soil samples and plant tissues (leaves, wood and bark) of adult willow (Salix sp.), poplar (Populus sp.), and birch (Betula pendula) trees were collected from five contaminated sites in France and Germany and analysed for Zn, Cd, Pb, Cu, Ca, and K. Cadmium concentration in tree leaves were correlated with tree species, whereas Zn concentration in leaves was site correlated. Birch revealed significantly lower leaf Cd concentrations (1.2-8.9 mg kg(-1)) than willow and poplar (5-80 mg kg(-1)), thus posing the lowest risk for TE contamination of surrounding areas. Birch displayed the lowest bark concentrations for Ca (2300-6200 mg kg(-1)) and K (320-1250 mg kg(-1)), indicating that it would be the most suitable tree species for fuel production, as high concentrations of K and Ca decrease the ash melting point which results in a reduced plant lifetime. Due to higher TE concentrations in bark compared to wood a small bark proportion in relation to the trunk is desirable. In general the bark proportion was reduced with the tree age. In summary, birch was amongst the investigated species the most suitable for biomass production on TE contaminated land.


Archive | 2015

Phytoremediation and Biochar Application as an Amendment

Michael W.H. Evangelou; Guido Fellet; Rong Ji; Rainer Schulin

Biochar is a charcoal-like carbonized organic material, but unlike charcoal, it is added to soils to improve their properties and to store carbon. It has received worldwide attention since the discovery of the fertile terra preta, which is an anthropogenic type of soil enriched in organic matter derived from charred residues. Biochar is characterized by a large surface area, a high porosity, and a high cation exchange capacity, determined to a large extent by source materials and pyrolysis temperatures. Owing to its properties, its amendment to contaminated soils has been considered for the immobilization of organic and inorganic contaminants. The application of biochar in soil can however also have an undesired effect, e.g., by decreasing the efficacy of pesticides, slowing the degradation of organic contaminants, and introducing contaminants such as PAH, PCB, and dioxins. This indicates a trade-off between the beneficial effects of biochar as a soil amendment and the introduction of new risks. Furthermore, the mechanisms of contaminant retention by biochar need to be investigated in more detail before biochar can be applied on a broad scale to manage soil pollution in a safe and sustainable way.

Collaboration


Dive into the Michael W.H. Evangelou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge