Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Blanca Gener is active.

Publication


Featured researches published by Blanca Gener.


Nature Genetics | 2009

Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response

Gillian I. Rice; Jacquelyn Bond; Aruna Asipu; Rebecca L. Brunette; Iain W. Manfield; Ian M. Carr; Jonathan C. Fuller; Richard M. Jackson; Teresa Lamb; Tracy A. Briggs; Manir Ali; Hannah Gornall; Alec Aeby; Simon P Attard-Montalto; Enrico Bertini; C. Bodemer; Knut Brockmann; Louise Brueton; Peter Corry; Isabelle Desguerre; Elisa Fazzi; Angels Garcia Cazorla; Blanca Gener; B.C.J. Hamel; Arvid Heiberg; Matthew Hunter; Marjo S. van der Knaap; Ram Kumar; Lieven Lagae; Pierre Landrieu

Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.


Lancet Neurology | 2013

Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: A case-control study

Gillian I. Rice; Gabriella M.A. Forte; Marcin Szynkiewicz; Diana Chase; Alec Aeby; Mohamed S. Abdel-Hamid; Sam Ackroyd; Rebecca L Allcock; Kathryn M. Bailey; Umberto Balottin; Christine Barnerias; Geneviève Bernard; C. Bodemer; Maria P. Botella; Cristina Cereda; Kate Chandler; Lyvia Dabydeen; Russell C. Dale; Corinne De Laet; Christian de Goede; Mireia del Toro; Laila Effat; Noemi Nunez Enamorado; Elisa Fazzi; Blanca Gener; Madli Haldre; Jean-Pierre Lin; John H. Livingston; Charles Marques Lourenço; Wilson Marques

BACKGROUND Aicardi-Goutières syndrome (AGS) is an inflammatory disorder caused by mutations in any of six genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR). The disease is severe and effective treatments are urgently needed. We investigated the status of interferon-related biomarkers in patients with AGS with a view to future use in diagnosis and clinical trials. METHODS In this case-control study, samples were collected prospectively from patients with mutation-proven AGS. The expression of six interferon-stimulated genes (ISGs) was measured by quantitative PCR, and the median fold change, when compared with the median of healthy controls, was used to create an interferon score for each patient. Scores higher than the mean of controls plus two SD (>2·466) were designated as positive. Additionally, we collated historical data for interferon activity, measured with a viral cytopathic assay, in CSF and serum from mutation-positive patients with AGS. We also undertook neutralisation assays of interferon activity in serum, and looked for the presence of autoantibodies against a panel of interferon proteins. FINDINGS 74 (90%) of 82 patients had a positive interferon score (median 12·90, IQR 6·14-20·41) compared with two (7%) of 29 controls (median 0·93, IQR 0·57-1·30). Of the eight patients with a negative interferon score, seven had mutations in RNASEH2B (seven [27%] of all 26 patients with mutations in this gene). Repeat sampling in 16 patients was consistent for the presence or absence of an interferon signature on 39 of 41 occasions. Interferon activity (tested in 147 patients) was negatively correlated with age (CSF, r=-0·604; serum, r=-0·289), and was higher in CSF than in serum in 104 of 136 paired samples. Neutralisation assays suggested that measurable antiviral activity was related to interferon α production. We did not record significantly increased concentrations of autoantibodies to interferon subtypes in patients with AGS, or an association between the presence of autoantibodies and interferon score or serum interferon activity. INTERPRETATION AGS is consistently associated with an interferon signature, which is apparently sustained over time and can thus be used to differentiate patients with AGS from controls. If future studies show that interferon status is a reactive biomarker, the measurement of an interferon score might prove useful in the assessment of treatment efficacy in clinical trials. FUNDING European Unions Seventh Framework Programme; European Research Council.


Nature Genetics | 2014

Mutations in the DNA methyltransferase gene, DNMT3A, cause an overgrowth syndrome with intellectual disability

Katrina Tatton-Brown; Sheila Seal; Elise Ruark; Jenny Harmer; Emma Ramsay; Silvana Del Vecchio Duarte; Anna Zachariou; Sandra Hanks; Eleanor O'Brien; Lise Aksglaede; Diana Baralle; Tabib Dabir; Blanca Gener; David Goudie; Tessa Homfray; Ajith Kumar; Daniela T. Pilz; Angelo Selicorni; Karen Temple; Lionel Van Maldergem; Naomi Yachelevich; Rob L. M. van Montfort; Nazneen Rahman

Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism. To identify new causes of human overgrowth, we performed exome sequencing in ten proband-parent trios and detected two de novo DNMT3A mutations. We identified 11 additional de novo mutations by sequencing DNMT3A in a further 142 individuals with overgrowth. The mutations alter residues in functional DNMT3A domains, and protein modeling suggests that they interfere with domain-domain interactions and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P < 0.0001). Mutation carriers had a distinctive facial appearance, intellectual disability and greater height. DNMT3A encodes a DNA methyltransferase essential for establishing methylation during embryogenesis and is commonly somatically mutated in acute myeloid leukemia. Thus, DNMT3A joins an emerging group of epigenetic DNA- and histone-modifying genes associated with both developmental growth disorders and hematological malignancies.Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism. To identify new causes of human overgrowth, we performed exome sequencing in ten proband-parent trios and detected two de novo DNMT3A mutations. We identified 11 additional de novo mutations by sequencing DNMT3A in a further 142 individuals with overgrowth. The mutations alter residues in functional DNMT3A domains, and protein modeling suggests that they interfere with domain-domain interactions and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P < 0.0001). Mutation carriers had a distinctive facial appearance, intellectual disability and greater height. DNMT3A encodes a DNA methyltransferase essential for establishing methylation during embryogenesis and is commonly somatically mutated in acute myeloid leukemia. Thus, DNMT3A joins an emerging group of epigenetic DNA- and histone-modifying genes associated with both developmental growth disorders and hematological malignancies.


American Journal of Human Genetics | 2012

Haploinsufficiency of a Spliceosomal GTPase Encoded by EFTUD2 Causes Mandibulofacial Dysostosis with Microcephaly

Lijia Huang; Jeremy Schwartzentruber; Stuart Douglas; Danielle C. Lynch; Chandree L. Beaulieu; Maria Leine Guion-Almeida; Roseli Maria Zechi-Ceide; Blanca Gener; Gabriele Gillessen-Kaesbach; Caroline Nava; Geneviève Baujat; Denise Horn; Usha Kini; Almuth Caliebe; Yasemin Alanay; Gülen Eda Utine; Dorit Lev; Jürgen Kohlhase; Arthur W. Grix; Dietmar R. Lohmann; Ute Hehr; Detlef Böhm; Jacek Majewski; Dennis E. Bulman; Dagmar Wieczorek; Kym M. Boycott

Mandibulofacial dysostosis with microcephaly (MFDM) is a rare sporadic syndrome comprising craniofacial malformations, microcephaly, developmental delay, and a recognizable dysmorphic appearance. Major sequelae, including choanal atresia, sensorineural hearing loss, and cleft palate, each occur in a significant proportion of affected individuals. We present detailed clinical findings in 12 unrelated individuals with MFDM; these 12 individuals compose the largest reported cohort to date. To define the etiology of MFDM, we employed whole-exome sequencing of four unrelated affected individuals and identified heterozygous mutations or deletions of EFTUD2 in all four. Validation studies of eight additional individuals with MFDM demonstrated causative EFTUD2 mutations in all affected individuals tested. A range of EFTUD2-mutation types, including null alleles and frameshifts, is seen in MFDM, consistent with haploinsufficiency; segregation is de novo in all cases assessed to date. U5-116kD, the protein encoded by EFTUD2, is a highly conserved spliceosomal GTPase with a central regulatory role in catalytic splicing and post-splicing-complex disassembly. MFDM is the first multiple-malformation syndrome attributed to a defect of the major spliceosome. Our findings significantly extend the range of reported spliceosomal phenotypes in humans and pave the way for further investigation in related conditions such as Treacher Collins syndrome.


Human Molecular Genetics | 2009

Autism-specific copy number variants further implicate the phosphatidylinositol signaling pathway and the glutamatergic synapse in the etiology of the disorder

Ivon Cuscó; Andrés Medrano; Blanca Gener; Mireia Vilardell; Fátima Gallastegui; Olaya Villa; Eva González; Benjamín Rodríguez-Santiago; Elisabet Vilella; Miguel del Campo; Luis A. Pérez-Jurado

Autism spectrum disorders (ASDs) constitute a group of severe neurodevelopmental conditions with complex multifactorial etiology. In order to explore the hypothesis that submicroscopic genomic rearrangements underlie some ASD cases, we have analyzed 96 Spanish patients with idiopathic ASD after extensive clinical and laboratory screening, by array comparative genomic hybridization (aCGH) using a homemade bacterial artificial chromosome (BAC) array. Only 13 of the 238 detected copy number alterations, ranging in size from 89 kb to 2.4 Mb, were present specifically in the autistic population (12 out of 96 individuals, 12.5%). Following validation by additional molecular techniques, we have characterized these novel candidate regions containing 24 different genes including alterations in two previously reported regions of chromosome 7 associated with the ASD phenotype. Some of the genes located in ASD-specific copy number variants act in common pathways, most notably the phosphatidylinositol signaling and the glutamatergic synapse, both known to be affected in several genetic syndromes related with autism and previously associated with ASD. Our work supports the idea that the functional alteration of genes in related neuronal networks is involved in the etiology of the ASD phenotype and confirms a significant diagnostic yield for aCGH, which should probably be included in the diagnostic workup of idiopathic ASD.


Human Molecular Genetics | 2013

A comprehensive molecular study on Coffin–Siris and Nicolaides–Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling

Dagmar Wieczorek; Nina Bögershausen; Filippo Beleggia; Sabine Steiner-Haldenstätt; Esther Pohl; Yun Li; Esther Milz; Marcel Martin; Holger Thiele; Janine Altmüller; Yasemin Alanay; Hülya Kayserili; Ludger Klein-Hitpass; Stefan Böhringer; Andreas Wollstein; Beate Albrecht; Koray Boduroglu; Almuth Caliebe; Krystyna H. Chrzanowska; Ozgur Cogulu; Francesca Cristofoli; Johanna Christina Czeschik; Koenraad Devriendt; Maria Teresa Dotti; Nursel Elcioglu; Blanca Gener; Timm O. Goecke; Małgorzata Krajewska-Walasek; Encarnación Guillén-Navarro; Joussef Hayek

Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes in the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.


American Journal of Human Genetics | 2013

Short-Rib Polydactyly and Jeune Syndromes Are Caused by Mutations in WDR60

Aideen McInerney-Leo; Miriam Schmidts; Claudio Cortes; Paul Leo; Blanca Gener; Andrew D. Courtney; Brooke Gardiner; Jessica Harris; Yeping Lu; Mhairi Marshall; Peter J. Scambler; Philip L. Beales; Matthew A. Brown; Andreas Zankl; Hannah M. Mitchison; Emma L. Duncan; Carol Wicking

Short-rib polydactyly syndromes (SRPS I-V) are a group of lethal congenital disorders characterized by shortening of the ribs and long bones, polydactyly, and a range of extraskeletal phenotypes. A number of other disorders in this grouping, including Jeune and Ellis-van Creveld syndromes, have an overlapping but generally milder phenotype. Collectively, these short-rib dysplasias (with or without polydactyly) share a common underlying defect in primary cilium function and form a subset of the ciliopathy disease spectrum. By using whole-exome capture and massive parallel sequencing of DNA from an affected Australian individual with SRPS type III, we detected two novel heterozygous mutations in WDR60, a relatively uncharacterized gene. These mutations segregated appropriately in the unaffected parents and another affected family member, confirming compound heterozygosity, and both were predicted to have a damaging effect on the protein. Analysis of an additional 54 skeletal ciliopathy exomes identified compound heterozygous mutations in WDR60 in a Spanish individual with Jeune syndrome of relatively mild presentation. Of note, these two families share one novel WDR60 missense mutation, although haplotype analysis suggested no shared ancestry. We further show that WDR60 localizes at the base of the primary cilium in wild-type human chondrocytes, and analysis of fibroblasts from affected individuals revealed a defect in ciliogenesis and aberrant accumulation of the GLI2 transcription factor at the centrosome or basal body in the absence of an obvious axoneme. These findings show that WDR60 mutations can cause skeletal ciliopathies and suggest a role for WDR60 in ciliogenesis.


Molecular Autism | 2015

Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders

Marta Codina-Solà; Benjamín Rodríguez-Santiago; Aïda Homs; Javier Santoyo; Maria Rigau; Gemma Aznar-Laín; Miguel del Campo; Blanca Gener; Elisabeth Gabau; Maria P. Botella; Armand Gutiérrez-Arumí; Guillermo Antiñolo; Luis A. Pérez-Jurado; Ivon Cuscó

BackgroundAutism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits.MethodsWe performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants.ResultsWe detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance.ConclusionsIntegrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.


BMC Medical Genetics | 2008

Array-CGH in patients with Kabuki-like phenotype: Identification of two patients with complex rearrangements including 2q37 deletions and no other recurrent aberration

Ivon Cuscó; Miguel del Campo; Mireia Vilardell; Eva González; Blanca Gener; Enrique Galán; Laura Toledo; Luis A. Pérez-Jurado

BackgroundKabuki syndrome (KS) is a multiple congenital anomaly syndrome characterized by specific facial features, mild to moderate mental retardation, postnatal growth delay, skeletal abnormalities, and unusual dermatoglyphic patterns with prominent fingertip pads. A 3.5 Mb duplication at 8p23.1-p22 was once reported as a specific alteration in KS but has not been confirmed in other patients. The molecular basis of KS remains unknown.MethodsWe have studied 16 Spanish patients with a clinical diagnosis of KS or KS-like to search for genomic imbalances using genome-wide array technologies. All putative rearrangements were confirmed by FISH, microsatellite markers and/or MLPA assays, which also determined whether the imbalance was de novo or inherited.ResultsNo duplication at 8p23.1-p22 was observed in our patients. We detected complex rearrangements involving 2q in two patients with Kabuki-like features: 1) a de novo inverted duplication of 11 Mb with a 4.5 Mb terminal deletion, and 2) a de novo 7.2 Mb-terminal deletion in a patient with an additional de novo 0.5 Mb interstitial deletion in 16p. Additional copy number variations (CNV), either inherited or reported in normal controls, were identified and interpreted as polymorphic variants. No specific CNV was significantly increased in the KS group.ConclusionOur results further confirmed that genomic duplications of 8p23 region are not a common cause of KS and failed to detect other recurrent rearrangement causing this disorder. The detection of two patients with 2q37 deletions suggests that there is a phenotypic overlap between the two conditions, and screening this region in the Kabuki-like patients should be considered.


American Journal of Human Genetics | 2013

LRIG2 Mutations Cause Urofacial Syndrome

Helen M. Stuart; Neil A. Roberts; Berk Burgu; Sarah B. Daly; Jill Urquhart; Sanjeev Bhaskar; Jonathan E. Dickerson; Murat Mermerkaya; Mesrur Selcuk Silay; Malcolm Lewis; M. Beatriz Orive Olondriz; Blanca Gener; Christian Beetz; Rita Eva Varga; Ömer Gülpınar; Evren Süer; Tarkan Soygür; Zeynep Birsin Özçakar; Fatoş Yalçınkaya; Aslı Kavaz; Burcu Bulum; Adnan Gucuk; W.W. Yue; Firat Erdogan; Andrew Berry; Neil A. Hanley; Edward A. McKenzie; Emma Hilton; Adrian S. Woolf; William G. Newman

Urofacial syndrome (UFS) (or Ochoa syndrome) is an autosomal-recessive disease characterized by congenital urinary bladder dysfunction, associated with a significant risk of kidney failure, and an abnormal facial expression upon smiling, laughing, and crying. We report that a subset of UFS-affected individuals have biallelic mutations in LRIG2, encoding leucine-rich repeats and immunoglobulin-like domains 2, a protein implicated in neural cell signaling and tumorigenesis. Importantly, we have demonstrated that rare variants in LRIG2 might be relevant to nonsyndromic bladder disease. We have previously shown that UFS is also caused by mutations in HPSE2, encoding heparanase-2. LRIG2 and heparanase-2 were immunodetected in nerve fascicles growing between muscle bundles within the human fetal bladder, directly implicating both molecules in neural development in the lower urinary tract.

Collaboration


Dive into the Blanca Gener's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivon Cuscó

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar

Olaya Villa

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dagmar Wieczorek

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesc Solé

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge