Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bo-Rahm Lee is active.

Publication


Featured researches published by Bo-Rahm Lee.


Biosensors and Bioelectronics | 2013

Rational design of modular allosteric aptamer sensor for label-free protein detection.

Gyeong Sook Bang; Suhyung Cho; Nahum Lee; Bo-Rahm Lee; June-Hyung Kim; Byung-Gee Kim

An aptamer can be redesigned to new functional molecules by conjugating with other oligonucleotides. However, it requires experimental trials to optimize the conjugating module with the sensitivity and selectivity toward a target. To reduce these efforts, we report rationally-designed modular allosteric aptamer sensor (MAAS), which is composed of coupled two aptamers and the regulator. For label-free protein detection, the protein-aptamer was conjugated with the malachite green (MG) aptamer for signaling. The MAAS additionally has the regulator domain which is designed to hybridize to a protein binding domain. The regulator makes MAAS to be inactive by destructing the original structure of the two aptamers. However, its conformation becomes active by dissociating the hybridization from the protein recognition signal, thereby inducing the binding of MG emitting the enhanced fluorescence. The design of regulator is based on the thermodynamic energy difference by the RNA conformational change and protein-aptamer affinity. Here we first demonstrated the MAAS for hepatitis C helicase and replicase. The target proteins were detected up to 250nM with minimized blank signals and displayed high specificities 10-fold greater than in non-specific proteins. The MAAS provides valuable tools that can be adapted to a wide range of configurations in bioanalytical applications.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2012

A novel function of Streptomyces integration host factor (sIHF) in the control of antibiotic production and sporulation in Streptomyces coelicolor

Yung-Hun Yang; Eunjung Song; Joost Willemse; Sung-Hee Park; Woo-Seong Kim; Eun Jung Kim; Bo-Rahm Lee; Ji-Nu Kim; Gilles P. van Wezel; Byung-Gee Kim

Bacterial integration host factors (IHFs) play important roles in site-specific recombination, DNA replication, transcription, genome organization and bacterial pathogenesis. In Streptomyces coelicolor, there are three putative IHFs: SCO1480, SCO2950 and SCO5556. SCO1480 or Streptomyces IHF (sIHF) was previously identified as a transcription factor that binds to the promoter region of redD, the pathway-specific regulatory gene for the undecylprodigiosin biosynthetic gene cluster. Here we show that production of the pigmented antibiotics actinorhodin and undecylprodigiosin is strongly enhanced in sihf null mutants, while sporulation was strongly inhibited, with an on average 25% increase in spore size. Furthermore, the sihf mutant spores showed strongly reduced viability, with high sensitivity to heat and live/dead staining revealing a high proportion of empty spores, while enhanced expression of sIHF increased viability. This suggests a major role for sIHF in controlling viability, perhaps via the control of DNA replication and/or segregation. Proteomic analysis of the sihf null mutant identified several differentially expressed transcriptional regulators, indicating that sIHF may have an extensive response regulon. These data surprisingly reveal that a basic architectural element conserved in many actinobacteria such as mycobacteria, corynebacteria, streptomycetes and rhodococci may act as a global regulator of secondary metabolism and cell development.


Analytical and Bioanalytical Chemistry | 2012

Bead affinity chromatography in a temperature-controllable microsystem for biomarker detection

Yul Koh; Bo-Rahm Lee; Hyo-Jin Yoon; Yun-Ho Jang; Yoon-Sik Lee; Yong-Kweon Kim; Byung-Gee Kim

This paper describes a temperature-controllable bead affinity chromatography (BAC) in a microsystem for biomarker detection, and preparing samples for matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis. Cancer marker proteins were captured in the microsystem by BAC with RNA aptamer-immobilized microbeads. The captured proteins were then denatured and released from the microbeads by controlling temperature. The microsystem consists of a microreactor for trapping microbeads and a temperature control unit for thermal treatment of the trapped beads. We used polymethylsilxoane or single crystalline silicon in fabricating two different types of reaction chamber to compare the differences in performance originated from the materials. Carcinoembryonic antigen was concentrated and purified from human serum using the microsystem and detected by MALDI-TOF MS to demonstrate the usefulness of the microsystem. The microsystem simplifies a sample preparation process required for protein analysis and cancer biomarker detection, which will accelerate the process of cancer research.


Applied Microbiology and Biotechnology | 2012

Characterization of a new ScbR-like γ-butyrolactone binding regulator (SlbR) in Streptomyces coelicolor

Yung-Hun Yang; Eunjung Song; Ji-Nu Kim; Bo-Rahm Lee; Eun Jung Kim; Sung-Hee Park; Woo-Seong Kim; Hyung-Yeon Park; Jong-Min Jeon; Thangamani Rajesh; Yun-Gon Kim; Byung-Gee Kim

Abstractγ-Butyrolactones in Streptomyces are well recognized as bacterial hormones, and they affect secondary metabolism of Streptomyces. γ-Butyrolactone receptors are considered important regulatory proteins, and various γ-butyrolactone synthases and receptors have been reported in Streptomyces. Here, we characterized a new regulator, SCO0608, that interacted with SCB1 (γ-butyrolactone of Streptomyces coelicolor) and bound to the scbR/A and adpA promoters. The SCO0608 protein sequences are not similar to those of any known γ-butyrolactone binding proteins in Streptomyces such as ScbR from S. coelicolor or ArpA from Streptomyces griseus. Interestingly, SCO0608 functions as a repressor of antibiotic biosynthesis and spore formation in R5 complex media. We showed the existence of another type of γ-butyrolactone receptor in Streptomyces, and this SCO0608 was named ScbR-like γ-butyrolactone binding regulator (SlbR) in S. coelicolor.


Molecules and Cells | 2013

Emerging tools for synthetic genome design

Bo-Rahm Lee; Suhyung Cho; Yoseb Song; Sun Chang Kim; Byung-Kwan Cho

Synthetic biology is an emerging discipline for designing and synthesizing predictable, measurable, controllable, and transformable biological systems. These newly designed biological systems have great potential for the development of cheaper drugs, green fuels, biodegradable plastics, and targeted cancer therapies over the coming years. Fortunately, our ability to quickly and accurately engineer biological systems that behave predictably has been dramatically expanded by significant advances in DNA-sequencing, DNA-synthesis, and DNA-editing technologies. Here, we review emerging technologies and methodologies in the field of building designed biological systems, and we discuss their future perspectives.


Biotechnology and Bioengineering | 2013

In vitro selection of sialic acid specific RNA aptamer and its application to the rapid sensing of sialic acid modified sugars

Suhyung Cho; Bo-Rahm Lee; Byung-Kwan Cho; June-Hyung Kim; Byung-Gee Kim

Sialic acids (SAs) are located on the terminal positions of glycan on a cell surface, which play important role in the spread and metastasis of cancer cells and infection of pathogen. For their detection and diagnosis, the finding of SA specific ligand is an essential prerequisite. Here, RNA aptamer for N‐acetylneuraminic acid (Neu5Ac), a representative of SAs, with the high affinity of 1.35 nM and the selectivity was screened by in vitro selection method. The strong binding of the screened aptamer was enough to protect the hydrolysis of Neu5Ac by neuraminidase with the stoichiometry of 1:1 molar ratio. For the rapid detection of SAs, the RNA aptamer was further engineered to the aptazyme sensor by conjugating with a ribozyme following the characterization of selected aptamer by RNase footprinting assay. Without additional desialylation, modification, or/and purification processes, the aptazyme indicated high catalytic activities in the presence of Neu5Ac over 20 µM in several minutes. Also, we observed that the aptazyme sensor shows high sensitivities to Neu5Ac‐conjugated sugars as well as Neu5Ac monomer, but not in non‐Neu5Ac modified sugars. The aptamer for Neu5Ac can support valuable tools in a wide range of bioanalytical applications as well as biosensors. Biotechnol. Bioeng. 2013; 110: 905–913.


Fems Microbiology Letters | 2015

Determination of single nucleotide variants in Escherichia coli DH5α by using short-read sequencing

Yoseb Song; Bo-Rahm Lee; Suhyung Cho; Yoo-Bok Cho; Seon-Won Kim; Taek Jin Kang; Sun Chang Kim; Byung-Kwan Cho

Escherichia coli DH5α is a common laboratory strain that provides an important platform for routine use in cloning and synthetic biology applications. Many synthetic circuits have been constructed and successfully expressed in E. coli DH5α; however, its genome sequence has not been determined yet. Here, we determined E. coli DH5α genome sequence and identified genetic mutations that affect its phenotypic functions by using short-read sequencing. The sequencing results clearly described the genotypes of E. coli DH5α, which aid in further studies using the strain. Additionally, we observed 105 single nucleotide variants (SNVs), 83% of which were detected in protein-coding regions compared to the parental strain E. coli DH1. Interestingly, 23% of the protein-coding regions have mutations in their amino acid residues, whose biological functions were categorized into two-component systems, peptidoglycan biosynthesis and lipopolysaccharide biosynthesis. These results underscore the advantages of E. coli DH5α, which tolerates the components of transformation buffer and expresses foreign plasmids efficiently. Moreover, these SNVs were also observed in the commercially available strain. These data provide the genetic information of E. coli DH5α for its future application in metabolic engineering and synthetic biology.


Applied and Environmental Microbiology | 2010

Rapid Functional Screening of Streptomyces coelicolor Regulators by Use of a pH Indicator and Application to the MarR-Like Regulator AbsC

Yung-Hun Yang; Eunjung Song; Bo-Rahm Lee; Eun Jung Kim; Sung-Hee Park; Yun-Gon Kim; Chang-Soo Lee; Byung-Gee Kim

ABSTRACT To elucidate the function of an unknown regulator in Streptomyces, differences in phenotype and antibiotic production between a deletion mutant and a wild-type strain (WT) were compared. These differences are easily hidden by complex media. To determine the specific nutrient conditions that reveal such differences, we used a multiwell method containing different nutrients along with bromothymol blue. We found several nutrients that provide key information on characterization conditions. By comparing the growth of wild-type and mutant strains on screened nutrients, we were able to measure growth, organic acid production, and antibiotic production for the elucidation of regulator function. As a result of this method, a member of the MarR-like regulator family, SCO5405 (AbsC), was newly characterized to control pyruvate dehydrogenase in Streptomyces coelicolor. Deletion of SCO5405 increased the pH of the culture broth due to decreased production of organic acids such as pyruvate and α-ketoglutarate and increased extracellular actinorhodin (ACT) production in minimal medium containing glucose and alanine (MMGA). This method could therefore be a high-throughput method for the characterization of unknown regulators.


Scientific Reports | 2017

Genome-wide primary transcriptome analysis of H 2 -producing archaeon Thermococcus onnurineus NA1

Suhyung Cho; Min-Sik Kim; Yujin Jeong; Bo-Rahm Lee; Jung Hyun Lee; Sung Gyun Kang; Byung-Kwan Cho

In spite of their pivotal roles in transcriptional and post-transcriptional processes, the regulatory elements of archaeal genomes are not yet fully understood. Here, we determine the primary transcriptome of the H2-producing archaeon Thermococcus onnurineus NA1. We identified 1,082 purine-rich transcription initiation sites along with well-conserved TATA box, A-rich B recognition element (BRE), and promoter proximal element (PPE) motif in promoter regions, a high pyrimidine nucleotide content (T/C) at the −1 position, and Shine-Dalgarno (SD) motifs (GGDGRD) in 5′ untranslated regions (5′ UTRs). Along with differential transcript levels, 117 leaderless genes and 86 non-coding RNAs (ncRNAs) were identified, representing diverse cellular functions and potential regulatory functions under the different growth conditions. Interestingly, we observed low GC content in ncRNAs for RNA-based regulation via unstructured forms or interaction with other cellular components. Further comparative analysis of T. onnurineus upstream regulatory sequences with those of closely related archaeal genomes demonstrated that transcription of orthologous genes are initiated by highly conserved promoter sequences, however their upstream sequences for transcriptional and translational regulation are largely diverse. These results provide the genetic information of T. onnurineus for its future application in metabolic engineering.


Applied Microbiology and Biotechnology | 2013

Deletion of an architectural unit, leucyl aminopeptidase (SCO2179), in Streptomyces coelicolor increases actinorhodin production and sporulation

Eunjung Song; Thangamani Rajesh; Bo-Rahm Lee; Eun Jung Kim; Jong-Min Jeon; Sung-Hee Park; Hyung-Yeon Park; Kwon-Young Choi; Yun-Gon Kim; Yung-Hun Yang; Byung-Gee Kim

Several reports state that three architectural units, including integration host factor, leucyl aminopeptidase (PepA), and purine regulator, are involved in transcriptional process with RNA polymerase in Escherichia coli. Similarly, Streptomyces species possess the same structural units. We previously identified a protein, Streptomyces integration host factor (sIHF), involved in antibiotic production and sporulation. Subsequently, the function of PepA (SCO2179) was examined in detail. PepA is highly conserved among various Streptomyces spp., but it has not yet been characterized in Streptomyces coelicolor. While it is annotated as a putative leucyl aminopeptidase because it contains a peptidase M17 superfamily domain, this protein did not exhibit leucyl aminopeptidase activity. SCO2179 deletion mutant showed increased actinorhodin production and sporulation, as well as more distinct physiological differences, particularly when cultured on N-acetylglucosamine (GlcNAc) minimal media. The results of two-dimensional gel analysis and reverse transcription PCR showed that the SCO2179 deletion increased protein and mRNA levels of ftsZ, ssgA, and actinorhodin (ACT)-related genes such as actII-ORF4, resulting in increased actinorhodin production and spore formation in minimal media containing GlcNAc.

Collaboration


Dive into the Bo-Rahm Lee's collaboration.

Top Co-Authors

Avatar

Byung-Gee Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Suhyung Cho

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Eunjung Song

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Eun Jung Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji-Nu Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sung-Hee Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyung-Yeon Park

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge