Bobby L. LaRue
University of North Texas Health Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bobby L. LaRue.
Forensic Science International-genetics | 2014
Jonathan L. King; Bobby L. LaRue; Nicole M.M. Novroski; Monika Stoljarova; Seung Bum Seo; Xiangpei Zeng; David H. Warshauer; Carey Davis; Walther Parson; Antti Sajantila; Bruce Budowle
Mitochondrial DNA typing in forensic genetics has been performed traditionally using Sanger-type sequencing. Consequently sequencing of a relatively-large target such as the mitochondrial genome (mtGenome) is laborious and time consuming. Thus, sequencing typically focuses on the control region due to its high concentration of variation. Massively parallel sequencing (MPS) has become more accessible in recent years allowing for high-throughput processing of large target areas. In this study, Nextera(®) XT DNA Sample Preparation Kit and the Illumina MiSeq™ were utilized to generate quality whole genome mitochondrial haplotypes from 283 individuals in a both cost-effective and rapid manner. Results showed that haplotypes can be generated at a high depth of coverage with limited strand bias. The distribution of variants across the mitochondrial genome was described and demonstrated greater variation within the coding region than the non-coding region. Haplotype and haplogroup diversity were described with respect to whole mtGenome and HVI/HVII. An overall increase in haplotype or genetic diversity and random match probability, as well as better haplogroup assignment demonstrates that MPS of the mtGenome using the Illumina MiSeq system is a viable and reliable methodology.
Forensic Science International-genetics | 2013
David H. Warshauer; David Lin; Kumar Hari; Ravi Jain; Carey Davis; Bobby L. LaRue; Jonathan L. King; Bruce Budowle
Recent studies have demonstrated the capability of second generation sequencing (SGS) to provide coverage of short tandem repeats (STRs) found within the human genome. However, there are relatively few bioinformatic software packages capable of detecting these markers in the raw sequence data. The extant STR-calling tools are sophisticated, but are not always applicable to the analysis of the STR loci commonly used in forensic analyses. STRait Razor is a newly developed Perl-based software tool that runs on the Linux/Unix operating system and is designed to detect forensically-relevant STR alleles in FASTQ sequence data, based on allelic length. It is capable of analyzing STR loci with repeat motifs ranging from simple to complex without the need for extensive allelic sequence data. STRait Razor is designed to interpret both single-end and paired-end data and relies on intelligent parallel processing to reduce analysis time. Users are presented with a number of customization options, including variable mismatch detection parameters, as well as the ability to easily allow for the detection of alleles at new loci. In its current state, the software detects alleles for 44 autosomal and Y-chromosome STR loci. The study described herein demonstrates that STRait Razor is capable of detecting STR alleles in data generated by multiple library preparation methods and two Illumina(®) sequencing instruments, with 100% concordance. The data also reveal noteworthy concepts related to the effect of different preparation chemistries and sequencing parameters on the bioinformatic detection of STR alleles.
Forensic Science International-genetics | 2015
Xiangpei Zeng; Jonathan L. King; Monika Stoljarova; David H. Warshauer; Bobby L. LaRue; Antti Sajantila; Jaynish Patel; Douglas R. Storts; Bruce Budowle
STR typing in forensic genetics has been performed traditionally using capillary electrophoresis (CE). However, CE-based method has some limitations: a small number of STR loci can be used; stutter products, dye artifacts and low level alleles. Massively parallel sequencing (MPS) has been considered a viable technology in recent years allowing high-throughput coverage at a relatively affordable price. Some of the CE-based limitations may be overcome with the application of MPS. In this study, a prototype multiplex STR System (Promega) was amplified and prepared using the TruSeq DNA LT Sample Preparation Kit (Illumina) in 24 samples. Results showed that the MinElute PCR Purification Kit (Qiagen) was a better size selection method compared with recommended diluted bead mixtures. The library input sensitivity study showed that a wide range of amplicon product (6-200ng) could be used for library preparation without apparent differences in the STR profile. PCR sensitivity study indicated that 62pg may be minimum input amount for generating complete profiles. Reliability study results on 24 different individuals showed that high depth of coverage (DoC) and balanced heterozygote allele coverage ratios (ACRs) could be obtained with 250pg of input DNA, and 62pg could generate complete or nearly complete profiles. These studies indicate that this STR multiplex system and the Illumina MiSeq can generate reliable STR profiles at a sensitivity level that competes with current widely used CE-based method.
BMC Genomics | 2015
Seung Bum Seo; Xiangpei Zeng; Jonathan L. King; Bobby L. LaRue; Mourad Assidi; Mohammad Hussain Al-Qahtani; Antti Sajantila; Bruce Budowle
BackgroundMassively parallel sequencing (MPS) technologies have the capacity to sequence targeted regions or whole genomes of multiple nucleic acid samples with high coverage by sequencing millions of DNA fragments simultaneously. Compared with Sanger sequencing, MPS also can reduce labor and cost on a per nucleotide basis and indeed on a per sample basis. In this study, whole genomes of human mitochondria (mtGenome) were sequenced on the Personal Genome Machine (PGMTM) (Life Technologies, San Francisco, CA), the out data were assessed, and the results were compared with data previously generated on the MiSeqTM (Illumina, San Diego, CA). The objectives of this paper were to determine the feasibility, accuracy, and reliability of sequence data obtained from the PGM.Results24 samples were multiplexed (in groups of six) and sequenced on the at least 10 megabase throughput 314 chip. The depth of coverage pattern was similar among all 24 samples; however the coverage across the genome varied. For strand bias, the average ratio of coverage between the forward and reverse strands at each nucleotide position indicated that two-thirds of the positions of the genome had ratios that were greater than 0.5. A few sites had more extreme strand bias. Another observation was that 156 positions had a false deletion rate greater than 0.15 in one or more individuals. There were 31-98 (SNP) mtGenome variants observed per sample for the 24 samples analyzed. The total 1237 (SNP) variants were concordant between the results from the PGM and MiSeq. The quality scores for haplogroup assignment for all 24 samples ranged between 88.8%-100%.ConclusionsIn this study, mtDNA sequence data generated from the PGM were analyzed and the output evaluated. Depth of coverage variation and strand bias were identified but generally were infrequent and did not impact reliability of variant calls. Multiplexing of samples was demonstrated which can improve throughput and reduce cost per sample analyzed. Overall, the results of this study, based on orthogonal concordance testing and phylogenetic scrutiny, supported that whole mtGenome sequence data with high accuracy can be obtained using the PGM platform.
Legal Medicine | 2014
Bobby L. LaRue; Robert Lagace; Chien-Wei Chang; Allison Holt; Lori Hennessy; Jianye Ge; Jonathan L. King; Ranajit Chakraborty; Bruce Budowle
Bi-Allelic Insertions and Deletions (INDELs) are a powerful set of genetic markers for Human Identification (HID). They have certain desirable features, such as low mutation rates, no stutter, and potentially small amplicon sizes that could prove effective in some circumstances. In this study, we analyzed the distribution of 114 INDELs in four North American populations (Caucasian, African American, Southwest Hispanic, and Asian) to estimate their distribution in major global populations. Of the 114 INDELs a primary panel of 38 candidate markers was selected that met the criteria of (1) a minimum allele frequency of greater than 0.20 across the populations studied; (2) general concordance with Hardy-Weinberg equilibrium (HWE) expectations; (3) relatively low FST based on the major populations; (4) physical distance between markers greater than 40 Mbp; and (5) a lack of linkage disequilibria between syntenic markers. Additionally, another 11 supplemental markers were selected for an expanded panel of 49 markers which met the above criteria, with the exception that they are separated at least by 20 Mbp. The resulting panels had Random Match Probabilities that were at least 10(-16) and 10(-19), respectively, and combined FST values of approximately 0.02. Given these findings, these INDELs should be useful for HID.
International Journal of Legal Medicine | 2016
Xiangpei Zeng; Ranajit Chakraborty; Jonathan L. King; Bobby L. LaRue; Rodrigo S. Moura-Neto; Bruce Budowle
Ancestry informative markers (AIMs) can be used to detect and adjust for population stratification and predict the ancestry of the source of an evidence sample. Autosomal single nucleotide polymorphisms (SNPs) are the best candidates for AIMs. It is essential to identify the most informative AIM SNPs across relevant populations. Several informativeness measures for ancestry estimation have been used for AIMs selection: absolute allele frequency differences (δ), F statistics (FST), and informativeness for assignment measure (In). However, their efficacy has not been compared objectively, particularly for determining affiliations of major US populations. In this study, these three measures were directly compared for AIMs selection among four major US populations, i.e., African American, Caucasian, East Asian, and Hispanic American. The results showed that the FST panel performed slightly better for population resolution based on principal component analysis (PCA) clustering than did the δ panel and both performed better than the In panel. Therefore, the 23 AIMs selected by the FST measure were used to characterize the four major American populations. Genotype data of nine sample populations were used to evaluate the efficiency of the 23-AIMs panel. The results indicated that individuals could be correctly assigned to the major population categories. Our AIMs panel could contribute to the candidate pool of AIMs for potential forensic identification purposes.
Forensic Science International-genetics | 2016
Frank R. Wendt; David H. Warshauer; Xiangpei Zeng; Jennifer D. Churchill; Nicole M.M. Novroski; Bing Song; Jonathan L. King; Bobby L. LaRue; Bruce Budowle
Short tandem repeat (STR) loci are the traditional markers used for kinship, missing persons, and direct comparison human identity testing. These markers hold considerable value due to their highly polymorphic nature, amplicon size, and ability to be multiplexed. However, many STRs are still too large for use in analysis of highly degraded DNA. Small bi-allelic polymorphisms, such as insertions/deletions (INDELs), may be better suited for analyzing compromised samples, and their allele size differences are amenable to analysis by capillary electrophoresis. The INDEL marker allelic states range in size from 2 to 6 base pairs, enabling small amplicon size. In addition, heterozygote balance may be increased by minimizing preferential amplification of the smaller allele, as is more common with STR markers. Multiplexing a large number of INDELs allows for generating panels with high discrimination power. The Nextera™ Rapid Capture Custom Enrichment Kit (Illumina, Inc., San Diego, CA) and massively parallel sequencing (MPS) on the Illumina MiSeq were used to sequence 68 well-characterized INDELs in four major US population groups. In addition, the STR Allele Identification Tool: Razor (STRait Razor) was used in a novel way to analyze INDEL sequences and detect adjacent single nucleotide polymorphisms (SNPs) and other polymorphisms. This application enabled the discovery of unique allelic variants, which increased the discrimination power and decreased the single-locus random match probabilities (RMPs) of 22 of these well-characterized INDELs which can be considered as microhaplotypes. These findings suggest that additional microhaplotypes containing human identification (HID) INDELs may exist elsewhere in the genome.
Human Heredity | 2012
Bobby L. LaRue; Sudhir K. Sinha; Anne H. Montgomery; Robyn Thompson; Lauren Klaskala; Jianye Ge; Jonathan L. King; Meredith Turnbough; Bruce Budowle
Objectives: Retrotransposable elements (REs), consisting of long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs), are a group of markers that can be useful for human identity testing. Until now, however, due to the inherent size difference (up to 6 kb in some instances) associated with insertion and null alleles (or INNULs), the use of REs for facilitated population studies has not been sought or practical. The size of the insertion elements (from a few hundred to several thousand bp) has proven to limit their utility as a marker because of the inefficient amplicon yield with PCR. A novel primer design now facilitates INNUL marker testing. A preliminary panel of single-locus markers was developed to evaluate the potential of typing these insertion elements. Nine INNULs (5 Alu and 4 LINEs) were typed in three major North American populations and analyzed for population genetic features. In addition, the variation of each marker among the sample populations provides insight of its potential use as individual identification or ancestral marker. Methods: INNUL markers were developed into fluorescently labeled single-loci PCR. Nine markers were developed with amplicons that were less than 180 bp in length, and, depending on the locus amplicons of the INNULs, alleles varied in size from 50 to 1 bp. This allele size is noteworthy because the insertion alleles of the 9 loci range in size from 297 to 6,195 bp. The allele distribution of the INNULs was assessed and analyzed in three major North American populations. Results: Upon observation of the distribution of the alleles in three major North American populations, the markers generally met Hardy-Weinberg expectations, and there was little evidence of detectable levels of linkage disequilibrium. Due to varying distributions of the alleles in the major population groups tested, some of the markers might be better suited for use as an individual identification marker, while others are better suited for bio-ancestral studies. Conclusions: Using the primer design strategy described in our work, SINEs and (for the first time, to our knowledge) LINEs can be utilized as markers for studying population genetic variation that is more amenable to the limitations of the PCR technique. This study lays the foundation for future work of developing a multiplex panel of INNUL markers that can be used as a single-tube assay for human identity testing utilizing small amplicons (<180 bp), which could be useful for ancient or degraded forensic DNA samples.
Forensic Science International-genetics | 2014
Pamela L. Marshall; Monika Stoljarova; Bobby L. LaRue; Jonathan L. King; Bruce Budowle
Success of DNA typing is related to the amount of target material recovered from an evidentiary item. Generally, the more DNA that is recovered, the better the chance is of obtaining a typing result that will be robust and reliable. One method of collecting stain materials is by swabbing. Recovery of DNA from a number of commercially available swabs is not an efficient process. The X-Swab™ (Diomics Corporation, La Jolla, CA) is a unique bio-specimen collection material with highly absorptive properties and can be dissolved during certain extraction conditions. Therefore, more DNA may be collected from a substrate and be released from the swab matrix than other swabs. The ability to recover DNA from X-Swab material and success in STR typing were compared with the Copan 4N6FLOQSwab™ (Brescia, Italy), a device which utilizes a proprietary flocked-swab technology to maximize DNA collection and elution efficiency. Both types of swabs were impregnated with known amounts of DNA and body fluids and allowed to air dry. In addition, blood was placed onto glass slides, allowed to dry and collected using both types of swabs. DNA recovery was assessed by DNA quantitation and by STR typing. Results suggested that X-Swab material yielded greater DNA recovery, particularly of low quantity samples (defined as diluted neat samples), compared with the 4N6FLOQSwab. Results also indicated that X-Swab material itself enhances yield of PCR products.
International Journal of Legal Medicine | 2018
Rachel Houston; Matthew Birck; Bobby L. LaRue; Sheree Hughes-Stamm; David Gangitano
As Cannabis sativa (marijuana) is a controlled substance in many parts of the world, the ability to track biogeographical origin of cannabis could provide law enforcement with investigative leads regarding its trade and distribution. Population substructure and inbreeding may cause cannabis plants to become more genetically related. This genetic relatedness can be helpful for intelligence purposes. Analysis of autosomal, chloroplast, and mitochondrial DNA allows for not only prediction of biogeographical origin of a plant but also discrimination between individual plants. A previously validated, 13-autosomal STR multiplex was used to genotype 510 samples. Samples were analyzed from four different sites: 21 seizures at the US–Mexico border, Northeastern Brazil, hemp seeds purchased in the US, and the Araucania area of Chile. In addition, a previously reported multi-loci system was modified and optimized to genotype five chloroplast and two mitochondrial markers. For this purpose, two methods were designed: a homopolymeric STR pentaplex and a SNP triplex with one chloroplast (Cscp001) marker shared by both methods for quality control. For successful mitochondrial and chloroplast typing, a novel real-time PCR quantitation method was developed and validated to accurately estimate the quantity of the chloroplast DNA (cpDNA) using a synthetic DNA standard. Moreover, a sequenced allelic ladder was also designed for accurate genotyping of the homopolymeric STR pentaplex. For autosomal typing, 356 unique profiles were generated from the 425 samples that yielded full STR profiles and 25 identical genotypes within seizures were observed. Phylogenetic analysis and case-to-case pairwise comparisons of 21 seizures at the US–Mexico border, using the Fixation Index (FST) as genetic distance, revealed the genetic association of nine seizures that formed a reference population. For mitochondrial and chloroplast typing, subsampling was performed, and 134 samples were genotyped. Complete haplotypes (STRs and SNPs) were observed for 127 samples. As expected, extensive haplotype sharing was observed; five distinguishable haplotypes were detected. In the reference population, the same haplotype was observed 39 times and two unique haplotypes were also detected. Haplotype sharing was observed between the US border seizures, Brazil, and Chile, while the hemp samples generated a distinct haplotype. Phylogenetic analysis of the four populations was performed, and results revealed that both autosomal and lineage markers could discern population substructure.