Carey Davis
University of North Texas Health Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carey Davis.
Forensic Science International-genetics | 2014
Jonathan L. King; Bobby L. LaRue; Nicole M.M. Novroski; Monika Stoljarova; Seung Bum Seo; Xiangpei Zeng; David H. Warshauer; Carey Davis; Walther Parson; Antti Sajantila; Bruce Budowle
Mitochondrial DNA typing in forensic genetics has been performed traditionally using Sanger-type sequencing. Consequently sequencing of a relatively-large target such as the mitochondrial genome (mtGenome) is laborious and time consuming. Thus, sequencing typically focuses on the control region due to its high concentration of variation. Massively parallel sequencing (MPS) has become more accessible in recent years allowing for high-throughput processing of large target areas. In this study, Nextera(®) XT DNA Sample Preparation Kit and the Illumina MiSeq™ were utilized to generate quality whole genome mitochondrial haplotypes from 283 individuals in a both cost-effective and rapid manner. Results showed that haplotypes can be generated at a high depth of coverage with limited strand bias. The distribution of variants across the mitochondrial genome was described and demonstrated greater variation within the coding region than the non-coding region. Haplotype and haplogroup diversity were described with respect to whole mtGenome and HVI/HVII. An overall increase in haplotype or genetic diversity and random match probability, as well as better haplogroup assignment demonstrates that MPS of the mtGenome using the Illumina MiSeq system is a viable and reliable methodology.
Forensic Science International-genetics | 2013
David H. Warshauer; David Lin; Kumar Hari; Ravi Jain; Carey Davis; Bobby L. LaRue; Jonathan L. King; Bruce Budowle
Recent studies have demonstrated the capability of second generation sequencing (SGS) to provide coverage of short tandem repeats (STRs) found within the human genome. However, there are relatively few bioinformatic software packages capable of detecting these markers in the raw sequence data. The extant STR-calling tools are sophisticated, but are not always applicable to the analysis of the STR loci commonly used in forensic analyses. STRait Razor is a newly developed Perl-based software tool that runs on the Linux/Unix operating system and is designed to detect forensically-relevant STR alleles in FASTQ sequence data, based on allelic length. It is capable of analyzing STR loci with repeat motifs ranging from simple to complex without the need for extensive allelic sequence data. STRait Razor is designed to interpret both single-end and paired-end data and relies on intelligent parallel processing to reduce analysis time. Users are presented with a number of customization options, including variable mismatch detection parameters, as well as the ability to easily allow for the detection of alleles at new loci. In its current state, the software detects alleles for 44 autosomal and Y-chromosome STR loci. The study described herein demonstrates that STRait Razor is capable of detecting STR alleles in data generated by multiple library preparation methods and two Illumina(®) sequencing instruments, with 100% concordance. The data also reveal noteworthy concepts related to the effect of different preparation chemistries and sequencing parameters on the bioinformatic detection of STR alleles.
Forensic Science International-genetics | 2013
Carey Davis; Jianye Ge; Cynthia J. Sprecher; Abirami Chidambaram; Jonelle M. Thompson; Margaret M. Ewing; Patricia M. Fulmer; Dawn R. Rabbach; Douglas R. Storts; Bruce Budowle
The Prototype PowerPlex(®) Y23 System (Promega Corporation, Madison, WI) is a polymerase chain reaction-based amplification kit that targets the 23 Y STR loci DYS19, DYS385a/b, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS481, DYS533, DYS549, DYS570, DYS576, DYS635, DYS643, and Y-GATA-H4. A total of 951 samples from six populations were typed to evaluate the kit and examine concordance for 17 of the loci that are in common with those that can be typed using the AmpFlSTR(®) Yfiler™ kit (Life Technologies, Carlsbad, CA). A total of 16,167 loci were analyzed for each multiplex, and overall concordance was observed. Because of different kit designs, and although concordant for the genetic type, discordant calls can occur due to a deletion at the DYS448 locus. Users should take into consideration such nomenclature anomalies when comparing Y STR profiles. This new kit allows a large battery of Y STR loci to be analyzed using the same basic technologies already employed in forensic laboratories.
Forensic Science International | 2010
Antti Sajantila; Jukka U. Palo; Ilkka Ojanperä; Carey Davis; Bruce Budowle
Medico-legal autopsy is the primary method in determining the cause and manner of death when the death is suspected to be unnatural. In some of these autopsies, the death remains ambiguous, even after a complete autopsy including histological investigation and toxicological screenings. In cases where there are no morphological abnormalities, medico-legal genetics may offer additional means to provide knowledge of possible genetic mutations, which may have initiated the process or predisposed the individual to stress risk conditions leading to death. One class of ambiguous deaths consists of drug-related deaths where the interpretation of the toxicological results are not clear. In such situations post mortem genotyping and the analysis of metabolite rations may provide an insight to the findings. A few cases demonstrating the potential strength of pharmacogenetics in medico-legal context has been published. However, there is a paramount need for serious scientific studies before the field of post mortem pharmacogenetics can be utilized in routine medico-legal analyses casework and brought routinely into courtroom.
Legal Medicine | 2012
Carey Davis; Jonathan L. King; Bruce Budowle; Arthur J. Eisenberg; Meredith Turnbough
The DNA extraction performance of three low-throughput extraction systems was evaluated. The instruments and respective chemistries all use a similar extraction methodology that involves binding DNA to a coated magnetic resin in the presence of chaotropic salt, washing of the resin to remove undesirable compounds, and elution of DNA from the particles in a low-salt solution. The AutoMate Express™ (Life Technologies Corporation, Carlsbad, CA), EZ1® Advanced XL (Qiagen Inc., Valencia, CA), and Maxwell® 16 (Promega Corporation, Madison, WI) were compared using a variety of samples including: blood on swabs, blood on denim, blood on cotton, blood mixed with inhibitors (a mixture of indigo, hematin, humic acid, and urban dust) on cotton, blood on FTA® paper, saliva residue on cigarette butt paper, epithelial cells on cotton swabs, neat semen on cotton, hair roots, bones, and teeth. Each instrument had a recommended pre-processing protocol for each sample type, and these protocols were followed strictly to reduce user bias. All extractions were performed in triplicate for each sample type. The three instruments were compared on the basis of quantity of DNA recovered (as determined by real-time PCR), relative level of inhibitors present in the extract (shown as shifts in the C(T) value for the internal PCR control in the real-time PCR assay), STR peak heights, use of consumables not included in the extraction kits, ease of use, and application flexibility. All three systems performed well; however extraction efficiency varied by sample type and with the preprocessing protocol applied to the various samples.
International Journal of Legal Medicine | 2012
Li L; Jianye Ge; Suhua Zhang; Jianzhang Guo; Shumin Zhao; Chengtao Li; Hui Tang; Carey Davis; Bruce Budowle; Yiping Hou; Yacheng Liu
This paper reports a maternity testing case to assess the biological relationship between a woman and the boy she was adopting. For all 46 tested autosomal STR loci, the adopting woman and the boy shared at least one allele at each locus, which supported that the woman could be the biological mother of the boy. The pairwise kinship indices (KIs) were calculated for various identity-by-descent distributions. Motherson was the most likely relationship with a very high KI (i.e., 6.91E+08) based on 35 independent autosomal STR loci, but KIs of other pairwise relationships (e.g., aunt–nephew, full sib, etc.) were also high. Further testing of X-STRs and mtDNA excluded the maternity relationship between woman and boy, in which 13 out of 20 X-STR loci were inconsistent and 18 nucleotide mismatches were observed at hypervariable regions I and II of the mtDNA. However, a more distant relationship (e.g., aunt–nephew) cannot be excluded. This case reinforces that possible false identifications can occur in kinship analysis cases yielding very high KIs.
Forensic Science International-genetics | 2012
Carey Davis; Jianye Ge; Jonathan L. King; Naseem Malik; Volker Weirich; Arthur J. Eisenberg; Bruce Budowle
Discordance of STR typing results can be expected between kits that employ different primers for amplification. The complex motif of the SE33 locus and its flanking regions can contribute to the degree of discordant results. Sequence-dependent conformational changes can manifest as length differences under certain electrophoretic conditions and/or use of different primers. The AmpFlSTR® NGM SElect™ PCR Amplification Kit (Life Technologies, Carlsbad, CA), PowerPlex® ESX 17 system (Promega Corporation, Madison, WI), and PowerPlex® ESI 17 system (Promega Corporation) were compared for concordance of allele calls for the SE33 marker in selected samples. A total of 16 samples were identified that were discordant at one of the SE33 alleles by an apparent one nucleotide in size. While the ESX 17 and NGM SElect™ kits yielded concordant results for these 16 samples, the ESI 17 kit generated alleles that differed. The discordant alleles were observed in individuals of African and European descent. Sequence analysis revealed that the one-base difference in size is not due to an indel but is instead the result of a single nucleotide polymorphism (SNP) in the flanking region of the SE33 repeat region. Three different SNPs were observed, one of which is novel. Although these migration anomalies were observed only with the ESI 17 kit, one cannot preclude that a similar phenomenon may occur with the other kits as data sets increase. The type and degree of discordance of STR allele calls among STR kits is an important issue when comparing STR profiles among laboratories and when determining search parameters for identifying candidate associations in national databases.
International Journal of Legal Medicine | 2015
David H. Warshauer; Carey Davis; Cydne Holt; Yonmee Han; Paulina Walichiewicz; Tom Richardson; Kathryn M. Stephens; Anne Jager; Jonathan L. King; Bruce Budowle
The TruSeq™ Forensic Amplicon library preparation protocol, originally designed to attach sequencing adapters to chromatin-bound DNA for chromatin immunoprecipitation sequencing (TruSeq™ ChIP-Seq), was used here to attach adapters directly to amplicons containing markers of forensic interest. In this study, the TruSeq™ Forensic Amplicon library preparation protocol was used to detect 160 single nucleotide polymorphisms (SNPs), including human identification SNPs (iSNPs), ancestry, and phenotypic SNPs (apSNPs) in 12 reference samples. Results were compared with those generated by a second laboratory using the same technique, as well as to those generated by whole genome sequencing (WGS). The genotype calls made using the TruSeq™ Forensic Amplicon library preparation protocol were highly concordant. The protocol described herein represents an effective and relatively sensitive means of preparing amplified nuclear DNA for massively parallel sequencing (MPS).
International Journal of Legal Medicine | 2011
Carey Davis; Jianye Ge; Abirami Chidambaram; Jonathan L. King; Meredith Turnbough; Michelle Collins; Orin Dym; Ranajit Chakraborty; Arthur J. Eisenberg; Bruce Budowle
Y chromosome short tandem repeat (Y-STR) loci are important genetic markers for forensic biological evidence analyses. However, paternal inheritance, reduced effective population size, and lack of independence between loci can reduce Y-STR diversity and may yield greater population substructure effects on a locus-by-locus basis compared with the autosomal STR loci. Population studies are necessary to assess the genetic variation of forensically relevant markers so that proper inferences can be made about the rarity of DNA profiles. This study examined 16 Y-STRs in three sampled populations of Native Americans from Alaska: Inupiat, Yupik, and Athabaskan. Population genetic and statistical issues addressed were: (1) the degree of diversity at locus and haplotype levels, (2) determination of the loci that contribute more so to haplotype diversity, and (3) the effects of population substructure on forensic statistical calculations of the rarity of a Y-STR profile. All three population samples were highly polymorphic at the haplotype level for the 16 Y-STR markers; however, the Native Americans demonstrated reduced genetic diversity compared with major US populations. The degree of substructure indicated that the three populations were related and admixed in terms of paternal lineage. The examination of more polymorphic loci may be needed to increase the power of discrimination of Y-STR systems in these populations.
Legal Medicine | 2015
Carey Davis; Dixie Peters; David H. Warshauer; Jonathan L. King; Bruce Budowle
Mitochondrial DNA testing is a useful tool in the analysis of forensic biological evidence. In cases where nuclear DNA is damaged or limited in quantity, the higher copy number of mitochondrial genomes available in a sample can provide information about the source of a sample. Currently, Sanger-type sequencing (STS) is the primary method to develop mitochondrial DNA profiles. This method is laborious and time consuming. Massively parallel sequencing (MPS) can increase the amount of information obtained from mitochondrial DNA samples while improving turnaround time by decreasing the numbers of manipulations and more so by exploiting high throughput analyses to obtain interpretable results. In this study 18 buccal swabs, three different tissue samples from five individuals, and four bones samples from casework were sequenced at hypervariable regions I and II using STS and MPS. Sample enrichment for STS and MPS was PCR-based. Library preparation for MPS was performed using Nextera® XT DNA Sample Preparation Kit and sequencing was performed on the MiSeq™ (Illumina, Inc.). MPS yielded full concordance of base calls with STS results, and the newer methodology was able to resolve length heteroplasmy in homopolymeric regions. This study demonstrates short amplicon MPS of mitochondrial DNA is feasible, can provide information not possible with STS, and lays the groundwork for development of a whole genome sequencing strategy for degraded samples.