Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bodu Liu is active.

Publication


Featured researches published by Bodu Liu.


Journal of Biological Chemistry | 2011

Up-regulation of miR-21 Mediates Resistance to Trastuzumab Therapy for Breast Cancer

Chang Gong; Yandan Yao; Ying Wang; Bodu Liu; Wei Wu; Jianing Chen; Fengxi Su; Herui Yao; Erwei Song

Trastuzumab resistance emerges to be a major issue in anti-human epidermal growth factor receptor 2 (HER2) therapy for breast cancers. Here, we demonstrated that miR-21 expression was up-regulated and its function was elevated in HER2+ BT474, SKBR3, and MDA-MB-453 breast cancer cells that are induced to acquire trastuzumab resistance by long-term exposure to the antibody, whereas protein expression of the PTEN gene, a miR-21 target, was reduced. Blocking the action of miR-21 with antisense oligonucleotides re-sensitized the resistant cells to the therapeutic activities of trastuzumab by inducing growth arrest, proliferation inhibition, and G1-S cell cycle checking in the presence of the antibody. Ectopic expression of miR-21 in HER2+ breast cancer cells confers resistance to trastuzumab. Rescuing PTEN expression with a p3XFLAG-PTEN-mut construct with deleted miR-21 targeting sequence at its 3′ UTR restored the growth inhibition of trastuzumab in the resistant cells by inducing PTEN activation and AKT inhibition. In vivo, administering miR-21 antisense oligonucleotides restored trastuzumab sensitivity in the resistant breast cancer xenografts by inducing PTEN expression, whereas injection of miR-21 mimics conferred trastuzumab resistant in the sensitive breast tumors via PTEN silence. Up-regulatin of miR-21 in tumor biopsies obtained from patients receiving pre-operative trastuzumab therapy was associated with poor trastuzumab response. Therefore, miR-21 overexpression contributes to trastuzumab resistance in HER2+ breast cancers and antagonizing miR-21 demonstrates therapeutic potential by sensitizing the malignancy to anti-HER2 treatment.


Oncogene | 2012

MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1

Lijuan Sun; Yandan Yao; Bodu Liu; Zhao-yu Lin; Ling Lin; Mei Yang; W. M. Zhang; Wen-Hui Chen; Chao-Bin Pan; Quentin Liu; Er Wei Song; Jin-song Li

Chemotherapy has been reported to induce epithelial-mesenchymal transition (EMT) in tumor cells, which is a critical step in the process of metastasis leading to cancer spreading and treatment failure. However, the underlying mechanisms of chemotherapy-induced EMT remain unclear, and the involvement of microRNAs (miRNA) in this process is poorly understood. To address these questions, we established stable chemotherapy-resistant tongue squamous cell carcinoma (TSCC) cell lines CAL27-res and SCC25-res by exposing the parental CAL27 and SCC25 lines to escalating concentrations of cisplatin for 6 months. CAL27-res and SCC25-res cells displayed mesenchymal features with enhanced invasiveness and motility. MiRNA microarray illustrated that miR-200b and miR-15b were the most significantly downregulated microRNAs in CAL27-res cells. Ectopic expression of miR-200b and miR-15b with miRNA mimics effectively reversed the phenotype of EMT in CAL27-res and SCC25-res cells, and sensitized them to chemotherapy, but inhibition of miR-200b and miR-15b in the sensitive lines with anti-sense oligonucleotides induced EMT and conferred chemoresistance. Retrieving the expression of B lymphoma Mo-MLV insertion region 1 homolog (BMI1), a target for miR-200b and miR-15b, in the presence of the miRNA mimics by transfecting CAL27-res cells with pcDNA3.1–BMI1-carrying mutated seed sequences of miR-200b or miR-15b at its 3′-UTR recapitulated chemotherapy-induced EMT. In vivo, enforced miR-200b or miR-15b expression suppressed metastasis of TSCC xenografts established by CAL27-res cells. Clinically, reduced miR-200b or miR-15b expression was associated with chemotherapeutic resistance in TSCCs and poor patient survival. Our data suggest that reduced expression of miR-200b and miR-15b underscores the mechanisms of chemotherapy-induced EMT in TSCC, and may serve as therapeutic targets to reverse chemotherapy resistance in tongue cancers.


Oncogene | 2015

MiR-106b expression determines the proliferation paradox of TGF-β in breast cancer cells

Chang Gong; Shaohua Qu; Bodu Liu; S Pan; Y. Jiao; Yan Nie; Fengxi Su; Q Liu; Er Wei Song

TGF-β has paradoxical effects on cancer cell proliferation, as it suppresses proliferation of normal epithelial and low-invasive cancer cells, but enhances that of high-invasive cancer cells. However, how cancer cells acquire the ability to evade the tumor-suppressing effects of TGF-β, yet still take advantage of its tumor-promoting effects, remains elusive. Here, we identified miR-106b as a molecular switch to determine TGF-β effects on cell proliferation. TGF-β1 enhances the transcription of miR-106b via a promoter independent of its host gene MCM7 by activating c-jun. In high-invasive breast cancer cells, miR-106b is upregulated by TGF-β1 at a much higher level than that in normal or low-invasive cancer cells. Accumulation of miR-106b counterbalances TGF-β growth-inhibiting effects by eliminating activated retinoblastoma (RB) and results in enhanced proliferation. Furthermore, miR-106b mediates TGF-β effects on tumor growth and metastasis in breast cancer xenografts. In addition, miR-106b expression is elevated in higher stage tumors and correlated with tumor progression in breast cancer patients. These findings suggest that high level of miR-106b induced by TGF-β determines the tumor-promoting effects of TGF-β in breast cancer.


Nature Communications | 2014

BRMS1L suppresses breast cancer metastasis by inducing epigenetic silence of FZD10.

Chang Gong; Shaohua Qu; Xiao Bin Lv; Bodu Liu; Weige Tan; Yan Nie; Fengxi Su; Qiang Liu; Herui Yao; Erwei Song

BRMS1L (breast cancer metastasis suppressor 1 like, BRMS1-like) is a component of Sin3A-histone deacetylase (HDAC) co-repressor complex that suppresses target gene transcription. Here we show that reduced BRMS1L in breast cancer tissues is associated with metastasis and poor patient survival. Functionally, BRMS1L inhibits breast cancer cells migration and invasion by inhibiting epithelial-mesenchymal transition. These effects are mediated by epigenetic silencing of FZD10, a receptor for Wnt signalling, through HDAC1 recruitment and histone H3K9 deacetylation at the promoter. Consequently, BRMS1L-induced FZD10 silencing inhibits aberrant activation of WNT3-FZD10-β-catenin signalling. Furthermore, BRMS1L is a target of miR-106b and miR-106b upregulation leads to BRMS1L reduction in breast cancer cells. RNA interference-mediated silencing of BRMS1L expression promotes metastasis of breast cancer xenografts in immunocompromised mice, whereas ectopic BRMS1L expression inhibits metastasis. Therefore, BRMS1L provides an epigenetic regulation of Wnt signalling in breast cancer cells and acts as a breast cancer metastasis suppressor.


Molecular Cancer | 2015

MiR-320a acts as a prognostic factor and Inhibits metastasis of salivary adenoid cystic carcinoma by targeting ITGB3

Lijuan Sun; Bodu Liu; Zhao-yu Lin; Yandan Yao; Yanyang Chen; Yang Li; Jianing Chen; Dongsheng Yu; Zhangui Tang; Bosheng Wang; Shuguang Zeng; Song Fan; You-yuan Wang; Yilin Li; Erwei Song; Jin-song Li

BackgroundSalivary Adenoid cystic carcinoma (SACC) patients with local invasion and lung metastasis are often resistant to conventional therapy such as operation, chemotherapy and radiotherapy. To explore the underling mechanisms, we studied the roles of miRNA in regulating invasiveness of SACC cells.MethodsMicroRNA profiling was done in SACC cells with microarray. MiRNA mimics or antisense oligonucleotide was transfected and invasiveness of SACC cells was evaluated by adhesion assay and transwell assay. The target gene of miRNA was identified by luciferase reporter assay and “rescue” experiment. Tumor metastasis was evaluated by BALB/c-nu mice xenografts. MiRNA and its target gene expression were identified by in-situ hybridization and immunohistochemistry respectively, in 302 patients from affiliated hospitals of Sun Yat-sen University and in 148 patients from affiliated hospitals of Central South University, and correlated to the clinicopathological status of the patients.ResultsMiR-320a was down-regulated in high lung metastatic ACCM and SACC-LM cells compared with the corresponding low metastatic ACC2 and SACC-83 cells, and inhibited adhesion, invasion and migration of SACC cells by targeting integrin beta 3 (ITGB3). In vivo, enforced miR-320a expression suppressed metastasis of SACC xenografts. In the two independent sets, miR-320a was downregulated in primary SACCs with metastasis compared to those without metastasis, and low expression of this miRNA predicts poor patient survival and rapid metastasis. Multivariate analysis showed that miR-320a expression was an independent indicator of lung metastasis.ConclusionsMiR-320a inhibits metastasis in SACCs by targeting ITGB3 and may serve as a therapeutic target and prognostic marker in salivary cancers.


Cancer Letters | 2015

miR-483-5p determines mitochondrial fission and cisplatin sensitivity in tongue squamous cell carcinoma by targeting FIS1

Song Fan; Wei-xiong Chen; Xiaobin Lv; Qiong-lan Tang; Lijuan Sun; Bodu Liu; Jiang-long Zhong; Zhao-yu Lin; You-yuan Wang; Qun-xing Li; Xin Yu; Han-qing Zhang; Yilin Li; Bin Wen; Zhang Zhang; Wei-liang Chen; Jin-song Li

Mitochondria play an important role in the initiation of apoptosis. However, whether cisplatin can induce apoptosis by initiating a mitochondrial fission pathway and the mechanism underlying this effect remain poorly understood. In this study, we show that the mitochondrial fission protein FIS1 is upregulated upon cisplatin treatment in tongue squamous cell carcinoma (TSCC) cells. FIS1 knockdown can attenuate mitochondrial fission and cisplatin sensitivity. We found that FIS1 is a direct target of miR-483-5p and that miR-483-5p can inhibit mitochondrial fission and cisplatin sensitivity in vitro and in vivo. Furthermore, we found that miR-483-5p and FIS1 are significantly associated with cisplatin sensitivity and with overall survival in patients with TSCC in a retrospective analysis of multiple centers. This study revealed that a novel mitochondrial fission pathway composed of miR-483-5p and FIS1 regulates cisplatin sensitivity. The modulation of miR-483-5p and FIS1 levels may provide a new approach for increasing cisplatin sensitivity.


Oncotarget | 2015

NBAT1 suppresses breast cancer metastasis by regulating DKK1 via PRC2

Pengnan Hu; Junjun Chu; Yanqing Wu; Lijuan Sun; Xiaobin Lv; Yinghua Zhu; Jingjing Li; Qiannan Guo; Chang Gong; Bodu Liu; Shicheng Su

Long noncoding RNA NBAT1 (neuroblastoma associated transcript 1) regulates cell proliferation and invasion by interacting with PRC2 (polycomb repressive complex 2) member EZH2 (enhancer of zeste 2). Decreased expression of NBAT1 is associated with poor clinical outcome in neuroblastomas. However, the roles of NBAT1 in other cancers remain unknown. Here, we report that NBAT1 is down-regulated in various types of cancer. Particularly, reduced NBAT1 in breast cancer is associated with tumor metastasis and poor patient prognosis. In vitro, ectopic NBAT1 inhibits migration and invasion of breast cancer cells. Mechanistic study shows that NBAT1 is associated with PRC2 member EZH2 and regulates global gene expression profile. Among them, DKK1 (dickkopf WNT signaling pathway inhibitor 1) is found to be regulated by NBAT1 in a PRC2 dependent manner, and is responsible for NBAT1s effects in inhibiting migration and invasion of breast cancer cells. Taken together, our study demonstrates that long noncoding RNA NBAT1 is a potential breast cancer prognostic marker, as well as a potential therapeutic target to inhibit breast cancer metastasis.


Oncotarget | 2015

E2F7 overexpression leads to tamoxifen resistance in breast cancer cells by competing with E2F1 at miR-15a/16 promoter.

Junjun Chu; Yinghua Zhu; Yujie Liu; Lijuan Sun; Xiaobin Lv; Yanqin Wu; Pengnan Hu; Fengxi Su; Chang Gong; Erwei Song; Bodu Liu; Qiang Liu

About 50–70% of breast cancers are estrogen receptor α (ERα) positive and most of them are sensitive to endocrine therapy including tamoxifen. However, one third of these patients will eventually develop resistance and relapse. We found that the expression of miR-15a and miR-16 were significantly decreased in tamoxifen resistant ER positive breast cancer cell lines. Exogenous expression of miR-15a/16 mimics re-sensitized resistant cells to tamoxifen by inhibiting Cyclin E1 and B cell lymphoma-2 (Bcl-2) to induce cell growth arrest and apoptosis respectively. Further, we identified that a repressive member of E2F family, E2F7, was responsible for the suppression of miR-15a/16 cluster by competing with E2F1 for E2F binding site at the promoter of their host gene DLEU2. Moreover, high expression of E2F7 is correlated with high risk of relapse and poor prognosis in breast cancer patients receiving tamoxifen treatment. Together, our results suggest that overexpression of E2F7 represses miR-15a/16 and then increases Cyclin E1 and Bcl-2 that result in tamoxifen resistance. E2F7 may be a valuable prognostic marker and a therapeutic target of tamoxifen resistance in breast cancer.


Science China-life Sciences | 2013

Non-coding RNAs regulate tumor cell plasticity.

Bodu Liu; Lijuan Sun; Erwei Song

Tumor metastasis is one of the most serious challenges for human cancers as the majority of deaths caused by cancer are associated with metastasis, rather than the primary tumor. Recent studies have demonstrated that tumor cell plasticity plays a critical role in tumor metastasis by giving rise to various cell types which is necessary for tumor to invade adjacent tissues and form distant metastasis. These include differentiation of cancer stem cells (CSCs), or epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial transition (MET). A growing body of evidence has demonstrated that the biology of tumor cell plasticity is tightly linked to functions of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Therefore, understanding the mechanisms how non-coding RNAs regulate tumor cell plasticity is essential for discovery of new diagnostic markers and therapeutic targets to overcome metastasis.


Journal of Biological Chemistry | 2015

Potentiated DNA Damage Response in Circulating Breast Tumor Cells Confers Resistance to Chemotherapy

Chang Gong; Bodu Liu; Yandan Yao; Shaohua Qu; Wei Luo; Weige Tan; Qiang Liu; Herui Yao; Lee Zou; Fengxi Su; Erwei Song

Background: Circulating tumor cells (CTCs) are responsible for cancer metastasis and predict prognosis for breast cancer. Results: CTCs repair DNA damage more efficiently than primary tumor cells (PTCs) due to checkpoint pre-activation. Conclusion: CTCs are more resistant to chemotherapy than PTCs. Significance: Inhibition of DNA checkpoints may reverse chemoresistance in CTCs. Circulating tumor cells (CTCs) are seeds for cancer metastasis and are predictive of poor prognosis in breast cancer patients. Whether CTCs and primary tumor cells (PTCs) respond to chemotherapy differently is not known. Here, we show that CTCs of breast cancer are more resistant to chemotherapy than PTCs because of potentiated DNA repair. Surprisingly, the chemoresistance of CTCs was recapitulated in PTCs when they were detached from the extracellular matrix. Detachment of PTCs increased the levels of reactive oxygen species and partially activated the DNA damage checkpoint, converting PTCs to a CTC-like state. Inhibition of checkpoint kinases Chk1 and Chk2 in CTCs reduces the basal checkpoint response and sensitizes CTCs to DNA damage in vitro and in mouse xenografts. Our results suggest that DNA damage checkpoint inhibitors may benefit the chemotherapy of breast cancer patients by suppressing the chemoresistance of CTCs and reducing the risk of cancer metastasis.

Collaboration


Dive into the Bodu Liu's collaboration.

Top Co-Authors

Avatar

Erwei Song

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Lijuan Sun

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Chang Gong

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Fengxi Su

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yandan Yao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Herui Yao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Jin-song Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Qiang Liu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Xiaobin Lv

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Shaohua Qu

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge