Xiaobin Lv
Sun Yat-sen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaobin Lv.
Journal of Biological Chemistry | 2012
Fengyan Yu; Yu Jiao; Yinghua Zhu; Ying Wang; Jingde Zhu; Xiuying Cui; Yujie Liu; Yinghua He; Eun Young Park; Hongyu Zhang; Xiaobin Lv; Kelong Ma; Fengxi Su; Jong Hoon Park; Erwei Song
Background: The mechanisms for miRNA dysregulation in BT-ICs remain obscure. Results: Single hypermethylated CpG site in the promoter region of miR-34c gene repressed miR-34c expression by reducing DNA binding activities of Sp1 and promoted self-renewal and EMT of BT-ICs. Conclusion: Single hypermethylated CpG site in the promoter region contributes to the reduction of microRNA in BT-ICs. Significance: Methylation regulates the expression of microRNA in BT-ICs. Tumor-initiating cells (T-ICs), a subpopulation of cancer cells with stem cell-like properties, are related to tumor relapse and metastasis. Our previous studies identified a distinct profile of microRNA (miRNA) expression in breast T-ICs (BT-ICs), and the dysregulated miRNAs contribute to the self-renewal and tumorigenesis of these cells. However, the underlying mechanisms for miRNA dysregulation in BT-ICs remain obscure. In the present study, we demonstrated that the expression and function of miR-34c were reduced in the BT-ICs of MCF-7 and SK-3rd cells, a breast cancer cell line enriched for BT-ICs. Ectopic expression of miR-34c reduced the self-renewal of BT-ICs, inhibited epithelial-mesenchymal transition, and suppressed migration of the tumor cells via silencing target gene Notch4. Furthermore, we identified a single hypermethylated CpG site in the promoter region of miR-34c gene that contributed to transcriptional repression of miR-34c in BT-ICs by reducing DNA binding activities of Sp1. Therefore, miR-34c reduction in BT-ICs induced by a single hypermethylated CpG site in the promoter region promotes self-renewal and epithelial-mesenchymal transition of BT-ICs.
PLOS ONE | 2013
Xiaobin Lv; Gui-Yong Lian; Hao-Ran Wang; Erwei Song; Herui Yao; Minghui Wang
Background It is currently unclear whether the expression of HOX transcript antisense RNA (HOTAIR) correlates with the progression of esophageal cancer. The aim of this study was to examine HOTAIR expression in patients with esophageal squamous cell cancer (ESCC) and explore its clinical significance. Methods Differences in the expression of HOTAIR were examined via in situ hybridization (ISH) and quantitative reverse transcriptase PCR (qRT-PCR). The prognostic significance was evaluated using Kaplan–Meier and Cox regression analyses. Proliferation, colony formation and migration assays were performed in ESCC cell lines to determine the function of HOTAIR in the progression of ESCC in vitro. Results A notably higher level of HOTAIR expression was found in ESCC tissues. High expression levels of HOTAIR in ESCC patients correlated positively with clinical stage, TNM classification, histological differentiation and vital status. HOTAIR expression was found to be an independent prognostic factor in ESCC patients. ESCC patients who expressed high levels of HOTAIR had substantially lower overall 5-year survival rates than HOTAIR-negative patients. In vitro assays of ESCC cell lines demonstrated that HOTAIR mediated the proliferation, colony formation and migratory capacity of ESCC cells. Conclusion HOTAIR is a potential biomarker for ESCC prognosis, and the dysregulation of HOTAIR may play an important role in ESCC progression.
Journal of Biological Chemistry | 2013
Haiyan Hu; Shuqin Li; Xiuying Cui; Xiaobin Lv; Yu Jiao; Fengyan Yu; Herui Yao; Erwei Song; Yongsong Chen; Minghui Wang; Ling Lin
Background: miR-663 is related to chemosensitivity in human breast cancer cells. Results: Overexpression of miR-663 was associated with chemoresistance and accompanied by down-regulation of HSPG2. Conclusion: Overexpression of hypomethylated miR-663 induces chemoresistance in breast cancer cells by down-regulating HSPG2. Significance: Learning how miR-663 regulates chemoresistance may provide a potential target for the miRNA-based approach of breast cancer therapy. MicroRNAs are involved in regulating the biology of cancer cells, but their involvement in chemoresistance is not fully understood. We found that miR-663 was up-regulated in our induced multidrug-resistant MDA-MB-231/ADM cell line and that this up-regulation was closely related to chemosensitivity. In the present study, we aimed to clarify the role of miR-663 in regulating the chemoresistance of breast cancer. MicroRNA microarray and quantitative RT-PCR assays were used to identify differentially expressed microRNAs. Cell apoptosis was evaluated by annexin V/propidium iodide staining, TUNEL, and reactive oxygen species generation analysis. The expression of miR-663 and HSPG2 in breast cancer tissues was detected by in situ hybridization and immunohistochemistry. The potential targets of miR-663 were defined by a luciferase reporter assay. Bisulfite sequencing PCR was used to analyze the methylation status. We found that miR-663 was significantly elevated in MDA-MB-231/ADM cells, and the down-regulation of miR-663 sensitized MDA-MB-231/ADM cells to both cyclophosphamide and docetaxel. The overexpression of miR-663 in breast tumor tissues was associated with chemoresistance; in MDA-MB-231 cells, this chemoresistance was accompanied by the down-regulation of HSPG2, which was identified as a target of miR-663. MDA-MB-231/ADM contained fewer methylated CpG sites than its parental cell line, and miR-663 expression in MDA-MB-231 cells was reactivated by 5-aza-29-deoxycytidine treatment, indicating that DNA methylation may play a functional role in the expression of miR-663. Our findings suggest that the overexpression of hypomethylated miR-663 induced chemoresistance in breast cancer cells by down-regulating HSPG2, thus providing a potential target for the development of an microRNA-based approach for breast cancer therapy.
Chinese Journal of Cancer | 2011
Xiaobin Lv; Yu Jiao; Yanwei Qing; Haiyan Hu; Xiuying Cui; Tianxin Lin; Erwei Song; Fengyan Yu
Metastasis is a multistep process involving modification of morphology to suit migration, reduction of tumor cell adhesion to the extracellular matrix, increase of cell mobility, tumor cell resistance to anoikis, and other steps. MicroRNAs are well-suited to regulate tumor metastasis due to their capacity to repress numerous target genes in a coordinated manner, thereby enabling their intervention at multiple steps of the invasion-metastasis cascade. In this study, we identified a microRNA exemplifying these attributes, miR-124, whose expression was reduced in aggressive MDA-MB-231 and SK-3rd breast cancer cells. Downregulation of miR-124 expression in highly aggressive breast cancer cells contributed in part to DNA hypermethylation around the promoters of the three genes encoding miR-124. Ectopic expression of miR-124 in MDA-MB-231 cells suppressed metastasis-related traits including formation of spindle-like morphology, migratory capacity, adhesion to fibronectin, and anoikis. These findings indicate that miR-124 suppresses multiple steps of metastasis by diverse mechanisms in breast cancer cells and suggest a potential application of miR-124 in breast cancer treatment.
PLOS ONE | 2013
Yujie Liu; Haiyan Li; Juan Feng; Xiuying Cui; Wei Huang; Yudong Li; Fengxi Su; Qiang Liu; Jiujun Zhu; Xiaobin Lv; Jianing Chen; Di Huang; Fengyan Yu
The RNA-binding protein Lin28 is known to promote malignancy by inhibiting the biogenesis of let-7, which functions as a tumor suppressor. However, the role of the Lin28/let-7 axis in the epithelial-to-mesenchymal transition (EMT) and stemness in breast cancer has not been clearly expatiated. In our previous study, we demonstrated that let-7 regulates self-renewal and tumorigenicity of breast cancer stem cells. In the present study, we demonstrated that Lin28 was highly expressed in mesenchymal (M) type cells (MDA-MB-231 and SK-3rd), but it was barely detectable in epithelial (E) type cells (MCF-7 and BT-474). Lin28 remarkably induced the EMT, increased a higher mammosphere formation rate and ALDH activity and subsequently promoted colony formation, as well as adhesion and migration in breast cancer cells. Furthermore, we demonstrated that Lin28 induced EMT in breast cancer cells via downregulation of let-7a. Strikingly, Lin28 overexpression was found in breast cancers that had undergone metastasis and was strongly predictive of poor prognoses in breast cancers. Given that Lin28 induced the EMT via let-7a and promoted breast cancer metastasis, Lin28 may be a therapeutic target for the eradication of breast cancer metastasis.
Clinical Cancer Research | 2015
Dan Liao; Li Zhong; Tingmei Duan; Ru Hua Zhang; Xin Wang; Gang Wang; Kaishun Hu; Xiaobin Lv; Tiebang Kang
Purpose: Aspirin has recently been reported to reduce both the incidence and the risk of metastasis in colon cancer. However, there is no evidence at the cellular levels or in the animal models for such an effect of aspirin on cancer metastasis. Experimental Design: MTT assay, colony formation assay, and apoptosis assay were employed to analyze the effects of aspirin on the osteosarcoma cell viability in vitro. The NF-κB activity was measured by the NF-κB p65 luciferase reporter. Western blotting was used to analyze the proteins in cells. The migration and invasion abilities of osteosarcoma cells in vitro were measured by the Transwell assay. Xenograft-bearing mice were used to assess the roles of aspirin in both tumor growth and metastasis of osteosarcoma in vivo (n = 5–8 mice/group). An unpaired Student t test or ANOVA with the Bonferroni post hoc test were used for the statistical comparisons. Results: Aspirin reduced cell viability in a dose- and time-dependent manner in osteosarcoma cell lines, and aspirin synergistically sensitized osteosarcoma cells to cisplatin (DDP) in vitro and in vivo (P < 0.001). Moreover, aspirin markedly repressed the migration and invasion of osteosarcoma cells in vitro (P < 0.001), and dramatically diminished the occurrence of osteosarcoma xenograft metastases to the lungs in vivo (P < 0.001). Mechanistically, aspirin diminishes osteosarcoma migration, invasion, and metastasis through the NF-κB pathway. Conclusions: Aspirin suppresses both the growth and metastasis of osteosarcoma through the NF-κB pathway at the cellular level and in the animal models. Clin Cancer Res; 21(23); 5349–59. ©2015 AACR.
Cancer Letters | 2015
Song Fan; Wei-xiong Chen; Xiaobin Lv; Qiong-lan Tang; Lijuan Sun; Bodu Liu; Jiang-long Zhong; Zhao-yu Lin; You-yuan Wang; Qun-xing Li; Xin Yu; Han-qing Zhang; Yilin Li; Bin Wen; Zhang Zhang; Wei-liang Chen; Jin-song Li
Mitochondria play an important role in the initiation of apoptosis. However, whether cisplatin can induce apoptosis by initiating a mitochondrial fission pathway and the mechanism underlying this effect remain poorly understood. In this study, we show that the mitochondrial fission protein FIS1 is upregulated upon cisplatin treatment in tongue squamous cell carcinoma (TSCC) cells. FIS1 knockdown can attenuate mitochondrial fission and cisplatin sensitivity. We found that FIS1 is a direct target of miR-483-5p and that miR-483-5p can inhibit mitochondrial fission and cisplatin sensitivity in vitro and in vivo. Furthermore, we found that miR-483-5p and FIS1 are significantly associated with cisplatin sensitivity and with overall survival in patients with TSCC in a retrospective analysis of multiple centers. This study revealed that a novel mitochondrial fission pathway composed of miR-483-5p and FIS1 regulates cisplatin sensitivity. The modulation of miR-483-5p and FIS1 levels may provide a new approach for increasing cisplatin sensitivity.
Oncotarget | 2015
Pengnan Hu; Junjun Chu; Yanqing Wu; Lijuan Sun; Xiaobin Lv; Yinghua Zhu; Jingjing Li; Qiannan Guo; Chang Gong; Bodu Liu; Shicheng Su
Long noncoding RNA NBAT1 (neuroblastoma associated transcript 1) regulates cell proliferation and invasion by interacting with PRC2 (polycomb repressive complex 2) member EZH2 (enhancer of zeste 2). Decreased expression of NBAT1 is associated with poor clinical outcome in neuroblastomas. However, the roles of NBAT1 in other cancers remain unknown. Here, we report that NBAT1 is down-regulated in various types of cancer. Particularly, reduced NBAT1 in breast cancer is associated with tumor metastasis and poor patient prognosis. In vitro, ectopic NBAT1 inhibits migration and invasion of breast cancer cells. Mechanistic study shows that NBAT1 is associated with PRC2 member EZH2 and regulates global gene expression profile. Among them, DKK1 (dickkopf WNT signaling pathway inhibitor 1) is found to be regulated by NBAT1 in a PRC2 dependent manner, and is responsible for NBAT1s effects in inhibiting migration and invasion of breast cancer cells. Taken together, our study demonstrates that long noncoding RNA NBAT1 is a potential breast cancer prognostic marker, as well as a potential therapeutic target to inhibit breast cancer metastasis.
Oncotarget | 2015
Junjun Chu; Yinghua Zhu; Yujie Liu; Lijuan Sun; Xiaobin Lv; Yanqin Wu; Pengnan Hu; Fengxi Su; Chang Gong; Erwei Song; Bodu Liu; Qiang Liu
About 50–70% of breast cancers are estrogen receptor α (ERα) positive and most of them are sensitive to endocrine therapy including tamoxifen. However, one third of these patients will eventually develop resistance and relapse. We found that the expression of miR-15a and miR-16 were significantly decreased in tamoxifen resistant ER positive breast cancer cell lines. Exogenous expression of miR-15a/16 mimics re-sensitized resistant cells to tamoxifen by inhibiting Cyclin E1 and B cell lymphoma-2 (Bcl-2) to induce cell growth arrest and apoptosis respectively. Further, we identified that a repressive member of E2F family, E2F7, was responsible for the suppression of miR-15a/16 cluster by competing with E2F1 for E2F binding site at the promoter of their host gene DLEU2. Moreover, high expression of E2F7 is correlated with high risk of relapse and poor prognosis in breast cancer patients receiving tamoxifen treatment. Together, our results suggest that overexpression of E2F7 represses miR-15a/16 and then increases Cyclin E1 and Bcl-2 that result in tamoxifen resistance. E2F7 may be a valuable prognostic marker and a therapeutic target of tamoxifen resistance in breast cancer.
Cell Biology International | 2013
Shufeng Ji; Guoli Shao; Xiaobin Lv; Yuan Liu; Yingfang Fan; Aiguo Wu; Haiyan Hu
miR‐128 is more highly expressed in drug‐resistant breast cancer samples than in drug‐sensitive samples. We have confirmed that Bax is the target of miR‐128 by negative post‐transcriptional regulation. miR‐128 and Bax were detected in the breast cancer cell line, MDA‐MB‐231, which was then transfected with miR‐128 MIMIC (precursor of miR‐128) or AMO (antisense‐miR‐128 oligonucleotides). After transfection, the chemosensitivity of MDA‐MB‐231 cell was up‐regulated with increasing of Bax and inhibition of miR‐128.