Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bonnie L. Kwiatkowski is active.

Publication


Featured researches published by Bonnie L. Kwiatkowski.


Nature | 2002

Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra

Robert B. McKane; Loretta C. Johnson; Gaius R. Shaver; Knute J. Nadelhoffer; Edward B. Rastetter; Brian Fry; Anne Giblin; Knut Kielland; Bonnie L. Kwiatkowski; James A. Laundre; Georgia Murray

Ecologists have long been intrigued by the ways co-occurring species divide limiting resources. Such resource partitioning, or niche differentiation, may promote species diversity by reducing competition. Although resource partitioning is an important determinant of species diversity and composition in animal communities, its importance in structuring plant communities has been difficult to resolve. This is due mainly to difficulties in studying how plants compete for belowground resources. Here we provide evidence from a 15N-tracer field experiment showing that plant species in a nitrogen-limited, arctic tundra community were differentiated in timing, depth and chemical form of nitrogen uptake, and that species dominance was strongly correlated with uptake of the most available soil nitrogen forms. That is, the most productive species used the most abundant nitrogen forms, and less productive species used less abundant forms. To our knowledge, this is the first documentation that the composition of a plant community is related to partitioning of differentially available forms of a single limiting resource.


Ecological Applications | 2013

Recovery from disturbance requires resynchronization of ecosystem nutrient cycles.

Edward B. Rastetter; Ruth D. Yanai; R. Q. Thomas; Matthew A. Vadeboncoeur; Timothy J. Fahey; Melany C. Fisk; Bonnie L. Kwiatkowski; Steven P. Hamburg

Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of N:P in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following harvest of a northern hardwood forest. In our simulations, nutrient loss in the harvest is small relative to postharvest losses. The low N:P ratio of harvest residue results in a preferential release of P and retention of N. The P release is in excess of plant requirements and P is lost from the active ecosystem cycle through secondary mineral formation and leaching early in succession. Because external P inputs are small, the resynchronization of the N and P cycles later in succession is achieved by a commensurate loss of N. Through succession, the ecosystem undergoes alternating periods of N limitation, then P limitation, and eventually co-limitation as the two cycles resynchronize. However, our simulations indicate that the overall rate and extent of recovery is limited by P unless a mechanism exists either to prevent the P loss early in succession (e.g., P sequestration not stoichiometrically constrained by N) or to increase the P supply to the ecosystem later in succession (e.g., biologically enhanced weathering). Our model provides a heuristic perspective from which to assess the resynchronization among tightly cycled nutrients and the effect of that resynchronization on recovery of ecosystems from disturbance.


Journal of Geophysical Research | 1998

Carbon cycling in the Kuparuk basin: Plant production, carbon storage, and sensitivity to future changes

John E. Hobbie; Bonnie L. Kwiatkowski; Edward B. Rastetter; Donald A. Walker; Robert B. McKane

The Marine Biological Laboratory General Ecosystem Model was calibrated for an arctic tussock tundra system using data from long-term observations and experiments at Toolik Lake, Alaska. These experiments include the effects of changes in temperature, light, CO 2 , and nutrients, so the model could be applied to five regions comprising the entire Kuparuk River basin. Net primary production, averaged for the entire basin, was 92 g C m -2 yr A 150 year simulation of carbon storage under a doubling of CO 2 (slow ramp-up) and a temperature increase of 3.5°C gave an estimate of +400 g C m -2 when soil moisture increased and +500 g C m -2 when soil moisture decreased. Drier soils stimulated decomposition producing an increase in nitrogen availability; the increased N led to increased net primary production. If this result is applicable to other arctic ecosystems, then it is unlikely that warming will enhance carbon loss to the atmosphere to further enhance warming.


Ecological Applications | 2009

Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter

Edward B. Rastetter; Mathew Williams; Kevin L. Griffin; Bonnie L. Kwiatkowski; Gabrielle Tomasky; Mark J. Potosnak; Paul C. Stoy; Gaius R. Shaver; Marc Stieglitz; John E. Hobbie; George W. Kling

Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions. We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data. We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter performance, but it did not improve performance when used individually. The EnKF estimates of leaf area followed the expected springtime canopy phenology. However, there were also diel fluctuations in the leaf-area estimates; these are a clear indication of a model deficiency possibly related to vapor pressure effects on canopy conductance.


Biogeochemistry | 2004

The role of down-slope water and nutrient fluxes in the response of Arctic hill slopes to climate change

Edward B. Rastetter; Bonnie L. Kwiatkowski; Séverine Le Dizès; John E. Hobbie

The down-slope movement of water and nutrients should link plant and soil processes along hill slopes. This linkage ought to be particularly strong in Arctic ecosystems where permafrost confines flowing water near the surface. We examined whether these hill-slope processes are important in assessments of the responses of Arctic tundra to changes in CO2 and climate using the Marine Biological Laboratory–General Ecosystem Model. Because higher rates of water flow decrease the distance over which nutrients must diffuse to the roots, down-slope vegetation is more productive under current conditions. In response to elevated CO2 and a warmer, wetter climate, the relative increase in carbon stored in vegetation and soils was higher uphill, but the absolute increase was higher downhill. Very little of the increase in carbon anywhere on the hill slope resulted from an increase in total ecosystem nitrogen. Instead, the increases were associated with increases in vegetation C:N ratio (woodiness) and with the redistribution of nitrogen from soils (low C:N) to vegetation (high C:N). Because these changes are fueled by nitrogen already in place, the down-slope movement of nitrogen does not appear to be a major determinant of the responses of Arctic tundra to changes in CO2 and climate.


Ecological Applications | 2015

Recovery of arctic tundra from thermal erosion disturbance is constrained by nutrient accumulation: a modeling analysis

Andrea R. Pearce; Edward B. Rastetter; Bonnie L. Kwiatkowski; William B. Bowden; Michelle C. Mack; Yueyang Jiang

Abstract. We calibrated the Multiple Element Limitation (MEL) model to Alaskan arctic tundra to simulate recovery of thermal erosion features (TEFs) caused by permafrost thaw and mass wasting. TEFs could significantly alter regional carbon (C) and nutrient budgets because permafrost soils contain large stocks of soil organic matter (SOM) and TEFs are expected to become more frequent as the climate warms. We simulated recovery following TEF stabilization and did not address initial, short-term losses of C and nutrients during TEF formation. To capture the variability among and within TEFs, we modeled a range of post-stabilization conditions by varying the initial size of SOM stocks and nutrient supply rates. Simulations indicate that nitrogen (N) losses after the TEF stabilizes are small, but phosphorus (P) losses continue. Vegetation biomass recovered 90% of its undisturbed C, N, and P stocks in 100 years using nutrients mineralized from SOM. Because of low litter inputs but continued decomposition, younger SOM continued to be lost for 10 years after the TEF began to recover, but recovered to about 84% of its undisturbed amount in 100 years. The older recalcitrant SOM in mineral soil continued to be lost throughout the 100-year simulation. Simulations suggest that biomass recovery depended on the amount of SOM remaining after disturbance. Recovery was initially limited by the photosynthetic capacity of vegetation but became co-limited by N and P once a plant canopy developed. Biomass and SOM recovery was enhanced by increasing nutrient supplies, but the magnitude, source, and controls on these supplies are poorly understood. Faster mineralization of nutrients from SOM (e.g., by warming) enhanced vegetation recovery but delayed recovery of SOM. Taken together, these results suggest that although vegetation and surface SOM on TEFs recovered quickly (25 and 100 years, respectively), the recovery of deep, mineral soil SOM took centuries and represented a major ecosystem C loss.


Ecological Applications | 2015

Modeling carbon-nutrient interactions during the early recovery of tundra after fire.

Yueyang Jiang; Edward B. Rastetter; Adrian V. Rocha; Andrea R. Pearce; Bonnie L. Kwiatkowski; Gaius R. Shaver

Fire frequency has dramatically increased in the tundra of northern Alaska, USA, which has major implications for the carbon budget of the region and the functioning of these ecosystems, which support important wildlife species. We investigated the postfire succession of plant and soil carbon (C), nitrogen (N), and phosphorus (P) fluxes and stocks along a burn severity gradient in the 2007 Anaktuvuk River fire scar in northern Alaska. Modeling results indicated that the early regrowth of postfire tundra vegetation was limited primarily by its canopy photosynthetic potential, rather than nutrient availability, because of the initially low leaf area and relatively high inorganic N and P concentrations in soil. Our simulations indicated that the postfire recovery of tundra vegetation was sustained predominantly by the uptake of residual inorganic N (i.e., in the remaining ash), and the redistribution of N and P from soil organic matter to vegetation. Although residual nutrients in ash were higher in the severe burn than the moderate burn, the moderate burn recovered faster because of the higher remaining biomass and consequent photosynthetic potential. Residual nutrients in ash allowed both burn sites to recover and exceed the unburned site in both aboveground biomass and production five years after the fire. The investigation of interactions among postfire C, N, and P cycles has contributed to a mechanistic understanding of the response of tundra ecosystems to fire disturbance. Our study provided insight on how the trajectory of recovery of tundra from wildfire is regulated during early succession.


Landscape Ecology | 2016

C–N–P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska

Yueyang Jiang; Adrian V. Rocha; Edward B. Rastetter; Gaius R. Shaver; Umakant Mishra; Qianlai Zhuang; Bonnie L. Kwiatkowski

ContextAs climate warms, changes in the carbon (C) balance of arctic tundra will play an important role in the global C balance. The C balance of tundra is tightly coupled to the nitrogen (N) and phosphorus (P) cycles because soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Warming will accelerate these nutrient cycles, which should stimulate plant growth.Objectives and methodsWe applied the multiple element limitation model to investigate the spatial distribution of soil organic matter and vegetation on the North Slope of Alaska and examine the effects of changes in N and P cycles on tundra C budgets under climate warming.ResultsThe spatial variation of vegetation biomass on the North Slope is mainly determined by nutrient mineralization, rather than air temperature. Our simulations show substantial increases in N and P mineralization with climate warming and consequent increases in nutrient availability to plants. There are distinctly different changes in N versus P cycles in response to warming. N is lost from the region because the warming-induced increase in N mineralization is in excess of plant uptake. However, P is more tightly cycled than N and the small loss of P under warming can be compensated by entrainment of recently weathered P into the ecosystem cycle. The increase in nutrient availability results in larger C gains in vegetation than C losses from soils and hence a net accumulation of C in the ecosystems.ConclusionsThe ongoing climate warming in Arctic enhances mineralization and leads to a net transfer of nutrient from soil organic matter to vegetation, thereby stimulating tundra plant growth and increased C sequestration in the tundra ecosystems. The C balance of the region is predominantly controlled by the internal nutrient cycles, and the external nutrient supply only exerts a minor effect on C budget.


Ecological Applications | 2005

A STABLE ISOTOPE SIMULATOR THAT CAN BE COUPLED TO EXISTING MASS BALANCE MODELS

Edward B. Rastetter; Bonnie L. Kwiatkowski; Robert B. McKane

To facilitate the simulation of isotope dynamics in ecosystems, we developed software to model changes in the isotopic signatures of the stocks of an element using the output from any parent model that specifies the stocks and flux rates of that element based on a mass balance approach. The software alleviates the need to recode the parent model to incorporate isotopes. This parent model can be a simple mass balance spreadsheet of the system. The isotopic simulations use a linear, donor-controlled approximation of the fluxes in the parent model, which are updated for each time step. These approximations are based on the output of the parent model, so no modifications to the parent model are required. However, all fluxes provided to the simulator must be gross fluxes, and the user must provide the initial isotopic signature for all stocks, the fractionation associated with each flux, and the isotopic signature of any flux originating from outside the system. We illustrate the use of the simulator with two examples. The first is based on a model of the carbon and nitrogen mass balance in an eight-species food web. We examine the consequences of using the steady-state assumption implicit in multi-source mixing models often used to map food webs based on 13C and 15N. We also use the simulator to analyze a pulse chase 15N-labeling experiment based on a spreadsheet model of the nitrogen cycle at the Harvard Forest Long Term Ecological Research site. We examine the constraints on net vs. gross N mineralization that are necessary to match the observed changes in the isotopic signatures of the forest N stocks.


Ecological Applications | 2017

Modeling long‐term changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition

Yueyang Jiang; Edward B. Rastetter; Gaius R. Shaver; Adrian V. Rocha; Qianlai Zhuang; Bonnie L. Kwiatkowski

To investigate the underlying mechanisms that control long-term recovery of tundra carbon (C) and nutrients after fire, we employed the Multiple Element Limitation (MEL) model to simulate 200-yr post-fire changes in the biogeochemistry of three sites along a burn severity gradient in response to increases in air temperature, CO2 concentration, nitrogen (N) deposition, and phosphorus (P) weathering rates. The simulations were conducted for severely burned, moderately burned, and unburned arctic tundra. Our simulations indicated that recovery of C balance after fire was mainly determined by the internal redistribution of nutrients among ecosystem components (controlled by air temperature), rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Increases in air temperature and atmospheric CO2 concentration resulted in (1) a net transfer of nutrient from soil organic matter to vegetation and (2) higher C : nutrient ratios in vegetation and soil organic matter. These changes led to gains in vegetation biomass C but net losses in soil organic C stocks. Under a warming climate, nutrients lost in wildfire were difficult to recover because the warming-induced acceleration in nutrient cycles caused further net nutrient loss from the system through leaching. In both burned and unburned tundra, the warming-caused acceleration in nutrient cycles and increases in ecosystem C stocks were eventually constrained by increases in soil C : nutrient ratios, which increased microbial retention of plant-available nutrients in the soil. Accelerated nutrient turnover, loss of C, and increasing soil temperatures will likely result in vegetation changes, which further regulate the long-term biogeochemical succession. Our analysis should help in the assessment of tundra C budgets and of the recovery of biogeochemical function following fire, which is in turn necessary for the maintenance of wildlife habitat and tundra vegetation.

Collaboration


Dive into the Bonnie L. Kwiatkowski's collaboration.

Top Co-Authors

Avatar

Edward B. Rastetter

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gaius R. Shaver

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

John E. Hobbie

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Robert B. McKane

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Yueyang Jiang

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marc Stieglitz

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge