Bora Karasulu
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bora Karasulu.
Journal of Chemical Physics | 2013
Jan P. Götze; Bora Karasulu; Walter Thiel
We address the effects of using Cartesian or internal coordinates in the adiabatic Franck-Condon (AFC) and vertical Franck-Condon (VFC) approaches to electronic spectra. The adopted VFC approach is a simplified variant of the original approach [A. Hazra, H. H. Chang, and M. Nooijen, J. Chem. Phys. 151, 2125 (2004)], as we omit any contribution from normal modes with imaginary frequency. For our test molecules ranging from ethylene to flavin compounds, VFC offers several advantages over AFC, especially by preserving the properties of the FC region and by avoiding complications arising from the crossing of excited-state potential surfaces or from the failure of the harmonic approximation. The spectral quality for our target molecules is insensitive to the chosen approach. We also explore the effects of Duschinsky rotation and relate the need for internal coordinates to the absence of symmetry elements. When using Duschinsky rotation and treating larger systems without planar symmetry, internal coordinates are found to outperform Cartesian coordinates in the AFC spectral calculations.
Journal of Chemical Theory and Computation | 2014
Bora Karasulu; Jan P. Götze; Walter Thiel
We address the performance of the vertical and adiabatic Franck-Condon (VFC/AFC) approaches combined with time-independent or time-dependent (TI/TD) formalisms in simulating the one-photon absorption spectra of three flavin compounds with distinct structural features. Calculations were done in the gas phase and in two solvents (water, benzene) for which experimental reference measurements are available. We utilized the independent mode displaced harmonic oscillator model without or with frequency alteration (IMDHO/IMDHO-FA) and also accounted for Duschinsky mixing effects. In the initial validation on the first excited singlet state of riboflavin, the range-separated functionals, CAM-B3LYP and ωB97xD, showed the best performance, but B3LYP also gave a good compromise between peak positions and spectral topology. Large basis sets were not mandatory to obtain high-quality spectra for the selected systems. The presence of a symmetry plane facilitated the computation of vibrationally broadened spectra, since different FC variants yield similar results and the harmonic approximation holds rather well. Compared with the AFC approach, the VFC approach performed equally well or even better for all three flavins while offering several advantages, such as avoiding error-prone geometry optimization procedures on excited-state surfaces. We also explored the advantages of curvilinear displacements and of a Duschinsky treatment for the AFC spectra in cases when a rotatable group is present on the chromophore. Taken together, our findings indicate that the combination of the VFC approach with the TD formalism and the IMDHO-FA model offers the best overall performance.
ChemPhysChem | 2014
Jan P. Götze; Dominik Kröner; Shiladitya Banerjee; Bora Karasulu; Walter Thiel
It is proposed that xanthophylls, and carotenoids in general, may assist in energy transfer from the chlorophyll Soret band to the Q band. Ground-state (1Ag ) and excited-state (1Bu ) optimizations of violaxanthin (Vx) and zeaxanthin (Zx) are performed in an environment mimicking the light-harvesting complex II (LHCII), including the closest chlorophyll b molecule (Chl). Time-dependent density functional theory (TD-DFT, CAM-B3LYP functional) is used in combination with a semi-empirical description to obtain the excited-state geometries, supported by additional DFT/multireference configuration interaction calculations, with and without point charges representing LHCII. In the ground state, Vx and Zx show similar properties. At the 1Bu minimum, the energy of the Zx 1Bu state is below the Chl Q band, in contrast to Vx. Both Vx and Zx may act as acceptors of Soret-state energy; transfer to the Q band seems to be favored for Vx. These findings suggest that carotenoids may generally mediate Soret-to-Q energy flow in LHCII.
Nanoscale | 2016
Bora Karasulu; René H. J. Vervuurt; Wilhelmus M. M. Kessels; Ageeth A. Bol
Integrating metals and metal oxides with graphene is key in utilizing its extraordinary material properties that are ideal for nanoelectronic and catalyst applications. Atomic layer deposition (ALD) has become a key technique for depositing ultrathin, conformal metal(oxide) films. ALD of metal(oxide) films on graphene, however, remains a genuine challenge due to the chemical inertness of graphene. In this study we address this issue by combining first-principles density functional theory (DFT) simulations with ALD experiments. The focus is on the Pt ALD on graphene, as this hybrid system is very promising for solar and fuel cells, hydrogen technologies, microreactors, and sensors. Here we elucidate the surface reactions underpinning the nucleation stage of Pt ALD on pristine, defective and functionalized graphenes. The employed reaction mechanism clearly depends on (a) the available surface groups on graphene, and (b) the ligands accompanying the metal centre in the precursor. DFT calculations also indicate that graphene oxide (GO) can afford a stronger adsorption of MeCpPtMe3, unlike Pt(acac)2, as compared to bare (non-functionalized) graphene, suggesting that GO monolayers are effective Pt ALD seed layers. Confirming the latter, we evince that wafer-scale, continuous Pt films can indeed be grown on GO monolayers using a thermal ALD process with MeCpPtMe3 and O2 gas. Besides, the current in-depth atomistic insights are of practical use for understanding similar ALD processes of other metals and metal oxides on graphene.
Journal of Physical Chemistry B | 2014
Christel M. Marian; Setsuko Nakagawa; Vidisha Rai-Constapel; Bora Karasulu; Walter Thiel
The purpose of this study was to find flavin derivatives with absorption maxima in the blue-green region of the visible spectrum that might be used as alternative cofactors in blue-light photoreceptors. To this end, the vertical absorption spectra of eight lumiflavin-related compounds were calculated by means of quantum chemical methods. The compounds differ from lumiflavin by the subsitution of an S atom for an O atom at the 2- and/or 4-positions of the isoalloxazine core, the substitution of an N atom for a CH group in the 6- and/or 9-positions, or an extension of the π system at the 7- and 8-positions. For the three most promising compounds, 2-thio-lumiflavin, 4-thio-lumiflavin, and 2,4-dithio-lumiflavin, the quantum chemical investigations were extended to include geometry relaxations in the excited states, rates for spin-forbidden transitions and an estimate of spectral shifts brought about by polar protic environments. We find these thiocarbonyl compounds to have very promising excited-state properties. They absorb in the blue-green wavelength regime around 500 nm, i.e., substantially red-shifted with respect to lumiflavin that is the cofactor of natural blue-light photoreceptors. Their triplet quantum yields are predicted to be close to unity while their triplet lifetimes are long enough to enable bimolecular photochemical reactions. The combination of these properties makes the thioflavins potentially suitable candidates as cofactors in biomimetic photoswitches.
Journal of Physical Chemistry B | 2015
Bora Karasulu; Walter Thiel
The photophysical properties of a push-pull flavin derivative, roseoflavin (RoF), are investigated in different surroundings at the molecular level, with focus on intramolecular charge transfer (ICT). Time-dependent density functional theory (TD-DFT, CAM-B3LYP functional) and DFT-based multireference configuration interaction (DFT/MRCI) are used to compute excited-state energies and one-electron properties of a truncated RoF model, roseolumiflavin (RoLF). Solvent effects are taken into account implicitly by the conductor-like polarizable continuum model and explicitly through a microsolvation scheme. In the gas phase, the calculations predict no crossing between the lowest locally excited (LE) and charge-transfer (CT) states upon twisting the dimethylamine donor group relative to the plane of the isoalloxazine acceptor moiety, whereas this crossing is found to be facile in solution (i.e., in water or benzene). Crossing of the LE and CT states facilitates ICT, which is the main cause of the fluorescence quenching and dual fluorescence character experimentally observed for roseoflavin in solution. The barrier for the ICT process is computed to be lower in water than in benzene, consistent with the enhanced ICT rates observed in more polar solvents. We present a detailed study of the molecular mechanism of the photoinduced ICT process in RoLF. For a typical donor-acceptor chromophore, three such mechanisms are discussed in the literature, which differ in the alignment of the donor and acceptor planes, namely, planar ICT (PICT), perpendicular-twisted ICT (TICT), and wagging ICT (WICT). Our theoretical results suggest that the TICT mechanism is favored in RoLF.
Chemistry of Materials | 2017
René H. J. Vervuurt; Bora Karasulu; Marcel A. Verheijen; Wilhelmus Erwin Mm Kessels; Ageeth A. Bol
A novel method to form ultrathin, uniform Al2O3 layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al2O3 films down to 8 nm in thickness. Hall measurements and Raman spectroscopy reveal that the hydrogen plasma functionalization is reversible upon Al2O3 ALD and subsequent annealing at 400 °C and in this way does not deteriorate the graphene’s charge carrier mobility. This is in contrast with oxygen plasma functionalization, which can lead to a uniform 5 nm thick closed film, but which is not reversible and leads to a reduction of the charge carrier mobility. Density functional theory (DFT) calculations attribute the uniform growth on both H2 and O2 plasma functionalized graphene to the enhanced adsorption of trimethylaluminum (TMA) on these surfaces. A DFT analysis of the possible reaction pathways for TMA precursor adsorption on hydrogenated graphene predicts a binding mechanism that cleans off the hydrogen functionalities from the surface, which explains the observed reversibility of the hydrogen plasma functionalization upon Al2O3 ALD.
Chemistry of Materials | 2017
A. Mameli; Yinghuan Kuang; Morteza Aghaee; Ck Chaitanya Ande; Bora Karasulu; M. Creatore; Adriaan J. M. Mackus; Wilhelmus M. M. Kessels; F. Roozeboom
Researchers present a novel method for area-selective atomic layer deposition (AS-ALD) large-area electronics. It is a direct-write ALD process of In2O3:H, a highly promising and relevant transparent conductive oxide (TCO) material which makes use of printing technology for surface activation. first the surface of H-terminated silicon materials is locally activated by a μ-plasma printer in air or O2, and In2O3:H is deposited selectively on the activated areas. The selectivity stems from the fact that ALD In2O3:H leads to very long nucleation delays on H-terminated silicon materials.
ACS Nano | 2017
A. Mameli; Marc J. M. Merkx; Bora Karasulu; F. Roozeboom; Wilhelmus M. M. Kessels; Adriaan J. M. Mackus
Area-selective atomic layer deposition (ALD) is rapidly gaining interest because of its potential application in self-aligned fabrication schemes for next-generation nanoelectronics. Here, we introduce an approach for area-selective ALD that relies on the use of chemoselective inhibitor molecules in a three-step (ABC-type) ALD cycle. A process for area-selective ALD of SiO2 was developed comprising acetylacetone inhibitor (step A), bis(diethylamino)silane precursor (step B), and O2 plasma reactant (step C) pulses. Our results show that this process allows for selective deposition of SiO2 on GeO2, SiNx, SiO2, and WO3, in the presence of Al2O3, TiO2, and HfO2 surfaces. In situ Fourier transform infrared spectroscopy experiments and density functional theory calculations underline that the selectivity of the approach stems from the chemoselective adsorption of the inhibitor. The selectivity between different oxide starting surfaces and the compatibility with plasma-assisted or ozone-based ALD are distinct features of this approach. Furthermore, the approach offers the opportunity of tuning the substrate-selectivity by proper selection of inhibitor molecules.
Biochimica et Biophysica Acta | 2015
Jan P. Götze; Bora Karasulu; Mahendra Patil; Walter Thiel
We present a computationally derived energy transfer model for the peridinin-chlorophyll a-protein (PCP), which invokes vibrational relaxation in the two lowest singlet excited states rather than internal conversion between them. The model allows an understanding of the photoinduced processes without assuming further electronic states or a dependence of the 2Ag state character on the vibrational sub-state. We report molecular dynamics simulations (CHARMM22 force field) and quantum mechanics/molecular mechanics (QM/MM) calculations on PCP. In the latter, the QM region containing a single peridinin (Per) chromophore or a Per-Chl a (chlorophyll a) pair is treated by density functional theory (DFT, CAM-B3LYP) for geometries and by DFT-based multireference configuration interaction (DFT/MRCI) for excitation energies. The calculations show that Per has a bright, green light absorbing 2Ag state, in addition to the blue light absorbing 1Bu state found in other carotenoids. Both states undergo a strong energy lowering upon relaxation, leading to emission in the red, while absorbing in the blue or green. The orientation of their transition dipole moments indicates that both states are capable of excited-state energy transfer to Chl a, without preference for either 1Bu or 2Ag as donor state. We propose that the commonly postulated partial intramolecular charge transfer (ICT) character of a donating Per state can be assigned to the relaxed 1Bu state, which takes on ICT character. By assuming that both 1Bu and 2Ag are able to donate to the Chl a Q band, one can explain why different chlorophyll species in PCP exhibit different acceptor capabilities.