Boris Reva
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Boris Reva.
Cancer Discovery | 2012
Ethan Cerami; Jianjiong Gao; Ugur Dogrusoz; Benjamin E. Gross; Selcuk Onur Sumer; Bülent Arman Aksoy; Anders Jacobsen; Caitlin J. Byrne; Michael L. Heuer; Erik G. Larsson; Yevgeniy Antipin; Boris Reva; Arthur P. Goldberg; Chris Sander; Nikolaus Schultz
The cBio Cancer Genomics Portal (http://cbioportal.org) is an open-access resource for interactive exploration of multidimensional cancer genomics data sets, currently providing access to data from more than 5,000 tumor samples from 20 cancer studies. The cBio Cancer Genomics Portal significantly lowers the barriers between complex genomic data and cancer researchers who want rapid, intuitive, and high-quality access to molecular profiles and clinical attributes from large-scale cancer genomics projects and empowers researchers to translate these rich data sets into biologic insights and clinical applications.
Cancer Cell | 2010
Barry S. Taylor; Nikolaus Schultz; Haley Hieronymus; Anuradha Gopalan; Yonghong Xiao; Brett S. Carver; Vivek K. Arora; Poorvi Kaushik; Ethan Cerami; Boris Reva; Yevgeniy Antipin; Nicholas Mitsiades; Thomas Landers; Igor Dolgalev; John Major; Manda Wilson; Nicholas D. Socci; Alex E. Lash; Adriana Heguy; James A. Eastham; Howard I. Scher; Victor E. Reuter; Peter T. Scardino; Chris Sander; Charles L. Sawyers; William L. Gerald
Annotation of prostate cancer genomes provides a foundation for discoveries that can impact disease understanding and treatment. Concordant assessment of DNA copy number, mRNA expression, and focused exon resequencing in 218 prostate cancer tumors identified the nuclear receptor coactivator NCOA2 as an oncogene in approximately 11% of tumors. Additionally, the androgen-driven TMPRSS2-ERG fusion was associated with a previously unrecognized, prostate-specific deletion at chromosome 3p14 that implicates FOXP1, RYBP, and SHQ1 as potential cooperative tumor suppressors. DNA copy-number data from primary tumors revealed that copy-number alterations robustly define clusters of low- and high-risk disease beyond that achieved by Gleason score. The genomic and clinical outcome data from these patients are now made available as a public resource.
Nucleic Acids Research | 2011
Boris Reva; Yevgeniy Antipin; Chris Sander
As large-scale re-sequencing of genomes reveals many protein mutations, especially in human cancer tissues, prediction of their likely functional impact becomes important practical goal. Here, we introduce a new functional impact score (FIS) for amino acid residue changes using evolutionary conservation patterns. The information in these patterns is derived from aligned families and sub-families of sequence homologs within and between species using combinatorial entropy formalism. The score performs well on a large set of human protein mutations in separating disease-associated variants (∼19 200), assumed to be strongly functional, from common polymorphisms (∼35 600), assumed to be weakly functional (area under the receiver operating characteristic curve of ∼0.86). In cancer, using recurrence, multiplicity and annotation for ∼10 000 mutations in the COSMIC database, the method does well in assigning higher scores to more likely functional mutations (‘drivers’). To guide experimental prioritization, we report a list of about 1000 top human cancer genes frequently mutated in one or more cancer types ranked by likely functional impact; and, an additional 1000 candidate cancer genes with rare but likely functional mutations. In addition, we estimate that at least 5% of cancer-relevant mutations involve switch of function, rather than simply loss or gain of function.
Nature Genetics | 2010
Jordi Barretina; Barry S. Taylor; Shantanu Banerji; Alexis Ramos; Mariana Lagos-Quintana; Penelope DeCarolis; Kinjal Shah; Nicholas D. Socci; Barbara A. Weir; Alan Ho; Derek Y. Chiang; Boris Reva; Craig H. Mermel; Gad Getz; Yevgenyi Antipin; Rameen Beroukhim; John Major; Charles Hatton; Richard Nicoletti; Megan Hanna; Ted Sharpe; Timothy Fennell; Kristian Cibulskis; Robert C. Onofrio; Tsuyoshi Saito; Neerav Shukla; Christopher Lau; Sven Nelander; Serena J. Silver; Carrie Sougnez
Soft-tissue sarcomas, which result in approximately 10,700 diagnoses and 3,800 deaths per year in the United States, show remarkable histologic diversity, with more than 50 recognized subtypes. However, knowledge of their genomic alterations is limited. We describe an integrative analysis of DNA sequence, copy number and mRNA expression in 207 samples encompassing seven major subtypes. Frequently mutated genes included TP53 (17% of pleomorphic liposarcomas), NF1 (10.5% of myxofibrosarcomas and 8% of pleomorphic liposarcomas) and PIK3CA (18% of myxoid/round-cell liposarcomas, or MRCs). PIK3CA mutations in MRCs were associated with Akt activation and poor clinical outcomes. In myxofibrosarcomas and pleomorphic liposarcomas, we found both point mutations and genomic deletions affecting the tumor suppressor NF1. Finally, we found that short hairpin RNA (shRNA)-based knockdown of several genes amplified in dedifferentiated liposarcoma, including CDK4 and YEATS4, decreased cell proliferation. Our study yields a detailed map of molecular alterations across diverse sarcoma subtypes and suggests potential subtype-specific targets for therapy.
PLOS Biology | 2008
Raffi Tonikian; Yingnan Zhang; Stephen L. Sazinsky; Bridget Currell; Jung-Hua Yeh; Boris Reva; Heike A. Held; Brent A. Appleton; Marie Evangelista; Yan-Yan Wu; Xiaofeng Xin; Andrew C. Chan; Somasekar Seshagiri; Laurence A. Lasky; Chris Sander; Charles Boone; Gary D. Bader; Sachdev S. Sidhu
PDZ domains are protein–protein interaction modules that recognize specific C-terminal sequences to assemble protein complexes in multicellular organisms. By scanning billions of random peptides, we accurately map binding specificity for approximately half of the over 330 PDZ domains in the human and Caenorhabditis elegans proteomes. The domains recognize features of the last seven ligand positions, and we find 16 distinct specificity classes conserved from worm to human, significantly extending the canonical two-class system based on position −2. Thus, most PDZ domains are not promiscuous, but rather are fine-tuned for specific interactions. Specificity profiling of 91 point mutants of a model PDZ domain reveals that the binding site is highly robust, as all mutants were able to recognize C-terminal peptides. However, many mutations altered specificity for ligand positions both close and far from the mutated position, suggesting that binding specificity can evolve rapidly under mutational pressure. Our specificity map enables the prediction and prioritization of natural protein interactions, which can be used to guide PDZ domain cell biology experiments. Using this approach, we predicted and validated several viral ligands for the PDZ domains of the SCRIB polarity protein. These findings indicate that many viruses produce PDZ ligands that disrupt host protein complexes for their own benefit, and that highly pathogenic strains target PDZ domains involved in cell polarity and growth.
Nature Genetics | 2011
Matthew Bott; Marie Brevet; Barry S. Taylor; Shigeki Shimizu; Tatsuo Ito; Lu Wang; Jenette Creaney; Richard A. Lake; Maureen F. Zakowski; Boris Reva; Chris Sander; Robert Delsite; Simon N. Powell; Qin Zhou; Ronglai Shen; Adam B. Olshen; Valerie W. Rusch; Marc Ladanyi
Malignant pleural mesotheliomas (MPMs) often show CDKN2A and NF2 inactivation, but other highly recurrent mutations have not been described. To identify additional driver genes, we used an integrated genomic analysis of 53 MPM tumor samples to guide a focused sequencing effort that uncovered somatic inactivating mutations in BAP1 in 23% of MPMs. The BAP1 nuclear deubiquitinase is known to target histones (together with ASXL1 as a Polycomb repressor subunit) and the HCF1 transcriptional co-factor, and we show that BAP1 knockdown in MPM cell lines affects E2F and Polycomb target genes. These findings implicate transcriptional deregulation in the pathogenesis of MPM.
Clinical Cancer Research | 2013
A. Ari Hakimi; Irina Ostrovnaya; Boris Reva; Nikolaus Schultz; Ying-Bei Chen; Mithat Gonen; Han Liu; Shugaku Takeda; Martin H. Voss; Satish K. Tickoo; Victor E. Reuter; Paul Russo; Emily H. Cheng; Chris Sander; Robert J. Motzer; James J. Hsieh
Purpose: To investigate the impact of newly identified chromosome 3p21 epigenetic tumor suppressors PBRM1, SETD2, and BAP1 on cancer-specific survival (CSS) of 609 patients with clear cell renal cell carcinoma (ccRCC) from 2 distinct cohorts. Experimental Design: Select sequencing on 3p tumor suppressors of 188 patients who underwent resection of primary ccRCC at the Memorial Sloan-Kettering Cancer Center (MSKCC) was conducted to interrogate the genotype–phenotype associations. These findings were compared with analyses of the genomic and clinical dataset from our nonoverlapping The Cancer Genome Atlas (TCGA) cohort of 421 patients with primary ccRCC. Results: 3p21 tumor suppressors are frequently mutated in both the MSKCC (PBRM1, 30.3%; SETD2, 7.4%; BAP1, 6.4%) and the TCGA (PBRM1, 33.5%; SETD2, 11.6%; BAP1, 9.7%) cohorts. BAP1 mutations are associated with worse CSS in both cohorts [MSKCC, P = 0.002; HR 7.71; 95% confidence interval (CI)2.08–28.6; TCGA, P = 0.002; HR 2.21; 95% CI 1.35–3.63]. SETD2 are associated with worse CSS in the TCGA cohort (P = 0.036; HR 1.68; 95% CI 1.04–2.73). On the contrary, PBRM1 mutations, the second most common gene mutations of ccRCC, have no impact on CSS. Conclusion: The chromosome 3p21 locus harbors 3 frequently mutated ccRCC tumor suppressor genes. BAP1 and SETD2 mutations (6%–12%) are associated with worse CSS, suggesting their roles in disease progression. PBRM1 mutations (30%–34%) do not impact CSS, implicating its principal role in the tumor initiation. Future efforts should focus on therapeutic interventions and further clinical, pathologic, and molecular interrogation of this novel class of tumor suppressors. Clin Cancer Res; 19(12); 3259–67. ©2013 AACR.
Genome Biology | 2007
Boris Reva; Yevgeniy Antipin; Chris Sander
We use a new algorithm (combinatorial entropy optimization [CEO]) to identify specificity residues and functional subfamilies in sets of proteins related by evolution. Specificity residues are conserved within a subfamily but differ between subfamilies, and they typically encode functional diversity. We obtain good agreement between predicted specificity residues and experimentally known functional residues in protein interfaces. Such predicted functional determinants are useful for interpreting the functional consequences of mutations in natural evolution and disease.
Molecular Cancer Therapeutics | 2013
Maria E. Arcila; Khedoudja Nafa; Jamie E. Chaft; Natasha Rekhtman; Christopher Lau; Boris Reva; Maureen F. Zakowski; Mark G. Kris; Marc Ladanyi
In contrast to other primary epidermal growth factor receptor (EGFR) mutations in lung adenocarcinomas, insertions in exon 20 of EGFR have been generally associated with resistance to EGFR-tyrosine kinase inhibitors. Their molecular spectrum, clinicopathologic characteristics, and prevalence are not well established. Tumors harboring EGFR exon 20 insertions were identified through an algorithmic screen of 1,500 lung adenocarcinomas. Cases were first tested for common mutations in EGFR (exons 19 and 21) and KRAS (exon 2) and, if negative, further analyzed for EGFR exon 20 insertions. All samples underwent extended genotyping for other driver mutations in EGFR, KRAS, BRAF, ERBB2/HER2, NRAS, PIK3CA, MEK1, and AKT by mass spectrometry; a subset was evaluated for ALK rearrangements. We identified 33 EGFR exon 20 insertion cases [2.2%, 95% confidence interval (CI), 1.6–3.1], all mutually exclusive with mutations in the other genes tested (except PIK3CA). They were more common among never-smokers (P < 0.0001). There was no association with age, sex, race, or stage. Morphologically, tumors were similar to those with common EGFR mutations but with frequent solid histology. Insertions were highly variable in position and size, ranging from 3 to 12 bp, resulting in 13 different insertions, which, by molecular modeling, are predicted to have potentially different effects on erlotinib binding. EGFR exon 20 insertion testing identifies a distinct subset of lung adenocarcinomas, accounting for at least 9% of all EGFR-mutated cases, representing the third most common type of EGFR mutation after exon 19 deletions and L858R. Insertions are structurally heterogeneous with potential implications for response to EGFR inhibitors. Mol Cancer Ther; 12(2); 220–9. ©2012 AACR.
Nature Methods | 2013
Abel Gonzalez-Perez; Ville Mustonen; Boris Reva; Graham R. S. Ritchie; Pau Creixell; Rachel Karchin; Miguel Vazquez; J. Lynn Fink; Karin S. Kassahn; John V. Pearson; Gary D. Bader; Paul C. Boutros; Lakshmi Muthuswamy; B. F. Francis Ouellette; Jüri Reimand; Rune Linding; Tatsuhiro Shibata; Alfonso Valencia; Adam Butler; Serge Dronov; Paul Flicek; Nick B. Shannon; Hannah Carter; Li Ding; Chris Sander; Josh Stuart; Lincoln Stein; Nuria Lopez-Bigas
The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype.