Boštjan Murovec
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Boštjan Murovec.
PLOS ONE | 2013
Blaz Stres; Woo Jun Sul; Boštjan Murovec; James M. Tiedje
Background The Himalaya with its altitude and geographical position forms a barrier to atmospheric transport, which produces much aqueous-particle monsoon precipitation and makes it the largest continuous ice-covered area outside polar regions. There is a paucity of data on high-altitude microbial communities, their native environments and responses to environmental-spatial variables relative to seasonal and deglaciation events. Methodology/Principal Findings Soils were sampled along altitude transects from 5000 m to 6000 m to determine environmental, spatial and seasonal factors structuring bacterial communities characterized by 16 S rRNA gene deep sequencing. Dust traps and fresh-snow samples were used to assess dust abundance and viability, community structure and abundance of dust associated microbial communities. Significantly different habitats among the altitude-transect samples corresponded to both phylogenetically distant and closely-related communities at distances as short as 50 m showing high community spatial divergence. High within-group variability that was related to an order of magnitude higher dust deposition obscured seasonal and temporal rearrangements in microbial communities. Although dust particle and associated cell deposition rates were highly correlated, seasonal dust communities of bacteria were distinct and differed significantly from recipient soil communities. Analysis of closest relatives to dust OTUs, HYSPLIT back-calculation of airmass trajectories and small dust particle size (4–12 µm) suggested that the deposited dust and microbes came from distant continental, lacustrine and marine sources, e.g. Sahara, India, Caspian Sea and Tibetan plateau. Cyanobacteria represented less than 0.5% of microbial communities suggesting that the microbial communities benefitted from (co)deposited carbon which was reflected in the psychrotolerant nature of dust-particle associated bacteria. Conclusions/Significance The spatial, environmental and temporal complexity of the high-altitude soils of the Himalaya generates ongoing disturbance and colonization events that subject heterogeneous microniches to stochastic colonization by far away dust associated microbes and result in the observed spatially divergent bacterial communities.
European Journal of Operational Research | 2004
Boštjan Murovec; Peter Šuhel
Abstract The local search technique has become a widely used tool for solving many combinatorial optimization problems. In the case of the job-shop the implementation of such a technique is not straightforward at all due to the existence of the technological constraints among the operations that belong to the same job. Their presence renders a certain set of schedules infeasible. Consequently, special attention is required when defining optimization algorithms to prevent the possibility of reaching an infeasible schedule during execution. Traditionally, the problem is tackled on the neighborhood level by using only a limited set of moves for which feasibility inherently holds. This paper proposes an alternative way to avoid infeasibility by incorporating a repairing technique into the mechanism for applying moves to a schedule. Whenever an infeasible move is being applied, a repairing mechanism rearranges the underlying schedule in such a way that the feasibility of the move is restored. The possibility of reaching infeasible solutions is, therefore, eliminated on the lowest possible conceptual level. Consequently, neighborhood functions need not to be constrained to a limited set of feasible moves any more.
Bioresource Technology | 2015
Boštjan Murovec; Sabina Kolbl; Blaž Stres
The aim of this study was to develop and validate a community supported online infrastructure and bioresource for methane yield data and accompanying metadata collected from published literature. In total, 1164 entries described by 15,749 data points were assembled. Analysis of data collection showed little congruence in reporting of methodological approaches. The largest identifiable source of variation in reported methane yields was represented by authorship (i.e. substrate batches within particular substrate class) within which experimental scales (volumes (0.02-5l), incubation temperature (34-40 °C) and % VS of substrate played an important role (p < 0.05, npermutations = 999) as well. The largest fraction of variability, however, remained unaccounted for and thus unexplained (> 63%). This calls for reconsideration of accepted approaches to reporting data in currently published literature to increase capacity to service industrial decision making to a greater extent.
conference on computer as a tool | 2003
Boštjan Murovec; Slavko Kocijancic
Data acquisition systems have become widely used tools in science and technology school laboratories. Their capabilities together with an inclusion of sensors and actuators enable teachers to perform a variety of experiments with an important didactical value as a part of a pedagogical process. This paper presents a USB based data acquisition system aimed at fulfilling the requirements of a broad spectrum of laboratory situations. It was developed according to a decade of experiences in providing computer aided laboratory courses at a high school and faculty levels of education.
Frontiers in Physiology | 2017
Robert Šket; Nicole Treichel; Tadej Debevec; Ola Eiken; Igor B. Mekjavic; Michael Schloter; Marius Vital; Jenna Chandler; James M. Tiedje; Boštjan Murovec; Zala Prevoršek; Blaž Stres
We explored the assembly of intestinal microbiota in healthy male participants during the run-in (5 day) and experimental phases [21-day normoxic bed rest (NBR), hypoxic bedrest (HBR)], and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, balanced fluid, and dietary intakes, controlled circadian rhythm, microbial ambiental burden, and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4,000 m simulated altitude), respectively. A number of parameters linked to intestinal transit spanning Bristol Stool Scale, defecation rates, zonulin, α1-antitrypsin, eosinophil derived neurotoxin, bile acids, reducing sugars, short chain fatty acids, total soluble organic carbon, water content, diet composition, and food intake were measured (167 variables). The abundance, structure, and diversity of butyrate producing microbial community were assessed using the two primary bacterial butyrate synthesis pathways, butyryl-CoA: acetate CoA-transferase (but) and butyrate kinase (buk) genes. Inactivity negatively affected fecal consistency and in combination with hypoxia aggravated the state of gut inflammation (p < 0.05). In contrast, gut permeability, various metabolic markers, the structure, diversity, and abundance of butyrate producing microbial community were not significantly affected. Rearrangements in the butyrate producing microbial community structure were explained by experimental setup (13.4%), experimentally structured metabolites (12.8%), and gut metabolite-immunological markers (11.9%), with 61.9% remaining unexplained. Many of the measured parameters were found to be correlated and were hence omitted from further analyses. The observed progressive increase in two immunological intestinal markers suggested that the transition from healthy physiological state toward the developed symptoms of low magnitude obesity-related syndromes was primarily driven by the onset of inactivity (lack of exercise in NBR) that were exacerbated by systemic hypoxia (HBR) and significantly alleviated by exercise, despite hypoxia (HAmb). Butyrate producing community in colon exhibited apparent resilience toward short-term modifications in host exercise or hypoxia. Progressive constipation (decreased intestinal motility) and increased local inflammation marker suggest that changes in microbial colonization and metabolism were taking place at the location of small intestine.
Frontiers in Physiology | 2018
Robert Šket; Tadej Debevec; Susanne Kublik; Michael Schloter; Anne Schoeller; Boštjan Murovec; Katarina Vogel Mikuš; Damjan Makuc; Klemen Pečnik; Janez Plavec; Igor B. Mekjavic; Ola Eiken; Zala Prevoršek; Blaž Stres
We explored the metagenomic, metabolomic and trace metal makeup of intestinal microbiota and environment in healthy male participants during the run-in (5 day) and the following three 21-day interventions: normoxic bedrest (NBR), hypoxic bedrest (HBR) and hypoxic ambulation (HAmb) which were carried out within a controlled laboratory environment (circadian rhythm, fluid and dietary intakes, microbial bioburden, oxygen level, exercise). The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for the NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg (~4,000 m simulated altitude) for HBR and HAmb interventions, respectively. Shotgun metagenomes were analyzed at various taxonomic and functional levels, 1H- and 13C -metabolomes were processed using standard quantitative and human expert approaches, whereas metals were assessed using X-ray fluorescence spectrometry. Inactivity and hypoxia resulted in a significant increase in the genus Bacteroides in HBR, in genes coding for proteins involved in iron acquisition and metabolism, cell wall, capsule, virulence, defense and mucin degradation, such as beta-galactosidase (EC3.2.1.23), α-L-fucosidase (EC3.2.1.51), Sialidase (EC3.2.1.18), and α-N-acetylglucosaminidase (EC3.2.1.50). In contrast, the microbial metabolomes, intestinal element and metal profiles, the diversity of bacterial, archaeal and fungal microbial communities were not significantly affected. The observed progressive decrease in defecation frequency and concomitant increase in the electrical conductivity (EC) preceded or took place in absence of significant changes at the taxonomic, functional gene, metabolome and intestinal metal profile levels. The fact that the genus Bacteroides and proteins involved in iron acquisition and metabolism, cell wall, capsule, virulence and mucin degradation were enriched at the end of HBR suggest that both constipation and EC decreased intestinal metal availability leading to modified expression of co-regulated genes in Bacteroides genomes. Bayesian network analysis was used to derive the first hierarchical model of initial inactivity mediated deconditioning steps over time. The PlanHab wash-out period corresponded to a profound life-style change (i.e., reintroduction of exercise) that resulted in stepwise amelioration of the negative physiological symptoms, indicating that exercise apparently prevented the crosstalk between the microbial physiology, mucin degradation and proinflammatory immune activities in the host.
Journal of Systems Architecture | 2013
Boštjan Murovec; Janez Perš; Rok Mandeljc; Vildana Sulić Kenk; Stanislav Kovacic
We propose a set of design principles for a cost-effective embedded smart camera. Our aim is to alleviate the shortcomings of the existing designs, such as excessive reliance on battery power and wireless networking, over-emphasized focus on specific use cases, and use of specialized technologies. In our opinion, these shortcomings prevent widespread commercialization and adoption of embedded smart cameras, especially in the context of visual-sensor networks. The proposed principles lead to a distinctively different design, which relies on commoditized, standardized and widely-available components, tools and knowledge. As an example of using these principles in practice, we present a smart camera, which is inexpensive, easy to build and support, capable of high-speed communication and enables rapid transfer of computer-vision algorithms to the embedded world.
PLOS ONE | 2017
Robert Šket; Nicole Treichel; Susanne Kublik; Tadej Debevec; Ola Eiken; Igor B. Mekjavic; Michael Schloter; Marius Vital; Jenna Chandler; James M. Tiedje; Boštjan Murovec; Zala Prevoršek; Matevž Likar; Blaž Stres
We explored the assembly of intestinal microbiota in healthy male participants during the randomized crossover design of run-in (5 day) and experimental phases (21-day normoxic bed rest (NBR), hypoxic bed rest (HBR) and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, with balanced fluid and dietary intakes, controlled circadian rhythm, microbial ambiental burden and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4000 m simulated altitude), respectively. A number of parameters linked to intestinal environment such as defecation frequency, intestinal electrical conductivity (IEC), sterol and polyphenol content and diversity, indole, aromaticity and spectral characteristics of dissolved organic matter (DOM) were measured (64 variables). The structure and diversity of bacterial microbial community was assessed using 16S rRNA amplicon sequencing. Inactivity negatively affected frequency of defecation and in combination with hypoxia increased IEC (p < 0.05). In contrast, sterol and polyphenol diversity and content, various characteristics of DOM and aromatic compounds, the structure and diversity of bacterial microbial community were not significantly affected over time. A new in-house PlanHab database was established to integrate all measured variables on host physiology, diet, experiment, immune and metabolic markers (n = 231). The observed progressive decrease in defecation frequency and concomitant increase in IEC suggested that the transition from healthy physiological state towards the developed symptoms of low magnitude obesity-related syndromes was dose dependent on the extent of time spent in inactivity and preceded or took place in absence of significant rearrangements in bacterial microbial community. Species B. thetaiotamicron, B. fragilis, B. dorei and other Bacteroides with reported relevance for dysbiotic medical conditions were significantly enriched in HBR, characterized with most severe inflammation symptoms, indicating a shift towards host mucin degradation and proinflammatory immune crosstalk.
European Journal of Operational Research | 2015
Boštjan Murovec
This article focuses on the evaluation of moves for the local search of the job-shop problem with the makespan criterion. We reason that the omnipresent ranking of moves according to their resulting value of a criterion function makes the local search unnecessarily myopic. Consequently, we introduce an alternative evaluation that relies on a surrogate quantity of the move’s potential, which is related to, but not strongly coupled with, the bare criterion. The approach is confirmed by empirical tests, where the proposed evaluator delivers a new upper bound on the well-known benchmark test yn2. The line of the argumentation also shows that by sacrificing accuracy the established makespan estimators unintentionally improve on the move evaluation in comparison to the exact makespan calculation, in contrast to the belief that the reliance on estimation degrades the optimization results.
Journal of Environmental Management | 2018
Boštjan Murovec; Damjan Makuc; Sabina Kolbl Repinc; Zala Prevoršek; Domen Zavec; Robert Šket; Klemen Pečnik; Janez Plavec; Blaž Stres
In this study, nuclear magnetic resonance (1H NMR) spectroscopic profiling was used to provide a more comprehensive view of microbial metabolites associated with poor reactor performance in a full-scale 4 MW mesophilic agricultural biogas plant under fully operational and also under inhibited conditions. Multivariate analyses were used to assess the significance of differences between reactors whereas artificial neural networks (ANN) were used to identify the key metabolites responsible for inhibition and their network of interaction. Based on the results of nm-MDS ordination the subsamples of each reactor were similar, but not identical, despite homogenization of the full-scale reactors before sampling. Hence, a certain extent of variability due to the size of the system under analysis was transferred into metabolome analysis. Multivariate analysis showed that fully active reactors were clustered separately from those containing inhibited reactor metabolites and were significantly different. Furthermore, the three distinct inhibited states were significantly different from each other. The inhibited metabolomes were enriched in acetate, caprylate, trimethylamine, thymine, pyruvate, alanine, xanthine and succinate. The differences in the metabolic fingerprint between inactive and fully active reactors observed in this study resembled closely the metabolites differentiating the (sub) acute rumen acidosis inflicted and healthy rumen metabolomes, creating thus favorable conditions for the growth and activity of pathogenic bacteria. The consistency of our data with those reported before for rumen ecosystems shows that 1H NMR based metabolomics is a reliable approach for the evaluation of metabolic events at full-scale biogas reactors.