Brandy J. Johnson
United States Naval Research Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brandy J. Johnson.
Journal of the American Chemical Society | 2011
Kimihiro Susumu; Eunkeu Oh; James B. Delehanty; Juan B. Blanco-Canosa; Brandy J. Johnson; Vaibhav Jain; William Judson Hervey; W. Russ Algar; Kelly Boeneman; Philip E. Dawson; Igor L. Medintz
We describe the synthesis of a series of four different ligands which are used to prepare hydrophilic, biocompatible luminescent quantum dots (QDs) and gold nanoparticles (AuNPs). Overall, the ligands are designed to be compact while still imparting a zwitterionic character to the NPs. Ligands are synthesized appended to a bidentate dihydrolipoic acid- (DHLA) anchor group, allowing for high-affinity NP attachment, and simultaneously incorporate tertiary amines along with carboxyl and/or hydroxyl groups. These are placed in close proximity within the ligand structure and their capacity for joint ionization imparts the requisite zwitterionic nature to the nanocrystal. QDs functionalized with the four different compact ligands were subjected to extensive physical characterization including surface charge, wettability, hydrodynamic size, and tolerance to a wide pH range or high salt concentration over time. The utility of the compact ligand coated QDs was further examined by testing of direct conjugation to polyhistidine-appended protein and peptides, aqueous covalent-coupling chemistry, and the ability to engage in Förster resonance energy transfer (FRET). Conjugating cell penetrating peptides to the compact ligand coated QD series facilitated their rapid and efficient cellular uptake, while subsequent cytotoxicity tests showed no apparent decreases in cell viability. In vivo biocompatibility was also demonstrated by microinjecting the compact ligand coated QDs into cells and monitoring their stability over time. Inherent benefits of the ligand design could be extended beyond QDs as AuNPs functionalized with the same compact ligand series showed similar colloidal properties. The strong potential of these ligands to expand NP capabilities in many biological applications is highlighted.
Sensors | 2008
Brian J. Melde; Brandy J. Johnson; Paul T. Charles
Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through co-condensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.
Langmuir | 2008
Brandy J. Johnson; Brian J. Melde; Paul T. Charles; Damaris Concepción Cardona; Michael A. Dinderman; Anthony P. Malanoski; Syed B. Qadri
Periodic mesoporous organosilicas incorporating diethylbenzene bridges in their pore walls were applied for the adsorption of nitroenegetic targets from aqueous solution. The materials were synthesized by co-condensing 1,4-bis(trimethoxysilylethyl)benzene (DEB) with 1,2-bis(trimethoxysilyl)ethane to improve structural characteristics. Molecular imprinting of the pore surfaces was employed through the use of a novel target-like surfactant to further enhance selectivity for targets of interest (tri- and dinitrotoluenes) over targets of similar structure ( p-cresol and p-nitrophenol). The headgroup of the commonly used alkylene oxide surfactant Brij76 was modified by esterification with 3,5-dinitrobenzoyl chloride. This provided a target analogue which was readily miscible with the Brij76 surfactant micelles used to direct material mesopore structures. The impact of variations in precursor ratios and amounts of imprint molecule was evaluated. The use of 12.5% of the modified Brij surfactant with a co-condensate employing 30% DEB was found to provide the best compromise between total capacity and selectivity for nitroenergetic targets.
Sensors | 2010
Brandy J. Johnson; Brian J. Melde; Cassandra Thomas; Anthony P. Malanoski; Iwona A. Leska; Paul T. Charles; Damon A. Parrish; Jeffrey R. Deschamps
Porphyrins are a family of highly conjugated molecules that strongly absorb visible light and fluoresce intensely. These molecules are sensitive to changes in their immediate environment and have been widely described for optical detection applications. Surfactant-templated organosilicate materials have been described for the semi-selective adsorption of small molecule contaminants. These structures offer high surface areas and large pore volumes within an organized framework. The organic bridging groups in the materials can be altered to provide varied binding characteristics. This effort seeks to utilize the tunable binding selectivity, high surface area, and low materials density of these highly ordered pore networks and to combine them with the unique spectrophotometric properties of porphyrins. In the porphyrin-embedded materials (PEMs), the organosilicate scaffold stabilizes the porphyrin and facilitates optimal orientation of porphyrin and target. The materials can be stored under ambient conditions and offer exceptional shelf-life. Here, we report on the design of PEMs with specificity for organophosphates and compounds of similar structure.
Biochemical and Biophysical Research Communications | 2008
Brandy J. Johnson; Baochuan Lin; Michael A. Dinderman; Robert A. Rubin; Anthony P. Malanoski; Frances S. Ligler
The anti-adhesive effects of cranberry have been attributed to both interactions of its components with the surface of bacterial cells and to inhibition of p-fimbriae expression. Previous reports also suggested that the presence of cranberry juice changed the Gram stain characteristics of Escherichia coli. Here, we show that the morphology of E. coli is changed when grown in the presence of juice or extract from Vaccinium macrocarpon (cranberry). Gene expression analysis indicates the down regulation of flagellar basal body rod and motor proteins. Consistent with this finding and previous reports, the SEM images indicate a decrease in the visible p-fimbriae. The iodine used in Gram-staining protocols was found to interact differently with the bacterial membrane when cells were cultured in spiked media. Slight alterations in the Gram stain protocol demonstrated that culturing in the presence of cranberry juice does not change the Gram stain characteristics contradicting other reports.
Sensors | 2011
Brandy J. Johnson; Nicole E. Anderson; Paul T. Charles; Anthony P. Malanoski; Brian J. Melde; Mansoor Nasir; Jeffrey R. Deschamps
The development of porphyrin-embedded mesoporous organosilicate materials for application to the detection of volatile hydrocarbon solvents is described. Design of the receptor and optical indicator construct begins with parallel selection of the porphyrin indicator and design of the mesoporous sorbent. For the porphyrin indicator, high binding affinity and strong changes in spectrophotometric character upon target interaction are desired. The sorbent should provide high target binding capacity and rapid binding kinetics. A number of porphyrin/metalloporphyrin variants and organosilicate sorbents were evaluated to determine the characteristics of their interaction with the targets, benzene, toluene, and hexane. The selected porphyrin candidates were covalently immobilized within a benzene-bridged sorbent. This construct was applied to the detection of targets using both fluorescence- and reflectance-based protocols. The use of red, green, and blue (RGB) color values from the constructs in a highly simplified detection scheme is described.
Biofactors | 2011
Baochuan Lin; Brandy J. Johnson; Robert A. Rubin; Anthony P. Malanoski; Frances S. Ligler
The various health benefits of Vaccinium macrocarpon (cranberry) are well documented and have been attributed mainly to its antioxidant capacity and anti-adhesive activity. Several different mechanisms have been proposed to explain the possible role of cranberries, cranberry juice, and cranberry extracts in inhibiting bacterial growth. These mechanisms of action (i.e., inhibition of the microbial growth) have not been thoroughly studied. Here, we took advantage of current advances in microarray technology and used GeneChip® Escherichia coli genome 2.0 arrays to gain insight into the molecular mechanisms involved in the impact of cranberry juice on the properties of E. coli growth. The inclusion of cranberry juice in bacterial growth media was found to significantly impact the doubling time of E. coli. The gene expression results revealed altered expression of genes associated with iron transport and essential metabolic enzymes as well as with adenosine triphosphate (ATP) synthesis and fumarate hydratase in these cultures. The altered expression of genes associated with iron transport was consistent with the strong iron chelating capability of proanthocyanidins, a major constituent of cranberry juice. The iron depletion effect was confirmed by adding exogenous iron to the growth media. This addition partially reversed the inhibitory effect on bacterial growth observed in the presence of cranberry juice/extracts.
Analytical Chemistry | 2008
Brandy J. Johnson; James B. Delehanty; Baochuan Lin; Frances S. Ligler
Proanthocyanidins (PACs) are an abundant class of compounds found in a variety of plant materials. Here we demonstrate the application of these materials as capture molecules for the removal of bacterial lipopolysaccharide (LPS) from solution. PACs from whole cranberries, grape juice, black tea, and cranberry juice were purified and immobilized onto thiol-activated Sepharose beads. This material was used in pull-down type assays for the capture of LPS. The binding of LPS by PACs has been shown to compete with that of polymyxin B which is known to bind the lipid A component of LPS. Assays conducted in the presence of lipid A verified that at least some component of the LPS binding activity of the PACs is via the lipid A moiety. Molar comparison of polymyxin B to proanthocyanidins indicated that the Sepharose immobilized PACs have a binding affinity for LPS similar to that of polymyxin B.
Talanta | 2010
Brandy J. Johnson; Brian J. Melde; Paul T. Charles; Michael A. Dinderman; Anthony P. Malanoski; Iwona A. Leska; Syed B. Qadri
Hierarchical organosilicate sorbents were synthesized which possess structure on two length scales: macropores of approximately 1microm lined by mesopores (35-45A). The incorporation of macropores provides enhanced flow-through characteristics over purely mesoporous materials, thereby reducing back pressure when used in column formats. Materials of this type with varied surface groups were applied to the adsorption of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) in both batch and column formats. The results presented here demonstrate the potential of these materials for application as solid phase extraction materials for the pre-concentration of nitroenergetic targets from aqueous solutions. The structural and binding characteristics of the materials have been evaluated and preliminary data on the impact of complex matrices is provided.
BMC Research Notes | 2009
Brandy J. Johnson; Baochuan Lin; Robert A. Rubin; Anthony P. Malanoski
BackgroundThe inhibition of Escherichia coli growth in the presence of Vaccinium macrocarpon has been extensively described; however, the mechanisms of this activity are not well characterized.FindingsHere, E. coli was grown in media spiked with cranberry juice. The growth rate and media pH were monitored over more than 300 generations. The pH of the growth media was found to decrease during cell growth. This result was unique to media spiked with cranberry juice and was not reproduced through the addition of sugars, proanthocyanidins, or metal chelators to growth media.ConclusionThis study demonstrated that factors other than sugars or proanthocyanidins in cranberry juice result in acidification of the growth media. Further studies are necessary for a complete understanding of the antimicrobial activity of cranberry products.