Michael A. Dinderman
United States Naval Research Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michael A. Dinderman.
Analytical Chemistry | 2008
Scott A. Trammell; Mazyar Zeinali; Brian J. Melde; Paul T. Charles; Freddie Velez; Michael A. Dinderman; Anne W. Kusterbeck; Michael A. Markowitz
We describe the use of nanoporous organosilicas for rapid preconcentration and extraction of trinitrotoluene (TNT) for electrochemical analysis and demonstrate the effect of template-directed molecular imprinting on TNT adsorption. The relative effects of the benzene (BENZ)- and diethylbenzene (DEB)-bridged organic-inorganic polymers, having narrow or broad pore size distributions, respectively, on electrochemical response and desorption behavior were examined. Sample volumes of 0.5-10 mL containing 5-1000 ppb TNT in a phosphate-buffered saline buffer were preconcentrated in-line before the detector using a microcolumn containing 10 mg of imprinted BENZ or DEB. Square-wave voltammetry was used to detect the first reduction peak of TNT in an electrochemical flow cell using a carbon working electrode and a Ag/AgCl reference electrode. Imprinted BENZ released TNT faster than imprinted DEB with considerably less peak tailing and displayed enhanced sensitivity and an improvement in the limit of detection (LOD) owing to more rapid elution of TNT from that material with increasing signal amplitude. For imprinted BENZ, the slope of signal versus concentration scaled linearly with increasing preconcentration volume, and for preconcentrating 10 mL of sample, the LOD for TNT was estimated to be 5 ppb. Template-directed molecularly imprinted DEB (TDMI-DEB) was 7-fold more efficient in adsorption of TNT from aqueous contaminated soil extract than nonimprinted DEB.
Langmuir | 2008
Brandy J. Johnson; Brian J. Melde; Paul T. Charles; Damaris Concepción Cardona; Michael A. Dinderman; Anthony P. Malanoski; Syed B. Qadri
Periodic mesoporous organosilicas incorporating diethylbenzene bridges in their pore walls were applied for the adsorption of nitroenegetic targets from aqueous solution. The materials were synthesized by co-condensing 1,4-bis(trimethoxysilylethyl)benzene (DEB) with 1,2-bis(trimethoxysilyl)ethane to improve structural characteristics. Molecular imprinting of the pore surfaces was employed through the use of a novel target-like surfactant to further enhance selectivity for targets of interest (tri- and dinitrotoluenes) over targets of similar structure ( p-cresol and p-nitrophenol). The headgroup of the commonly used alkylene oxide surfactant Brij76 was modified by esterification with 3,5-dinitrobenzoyl chloride. This provided a target analogue which was readily miscible with the Brij76 surfactant micelles used to direct material mesopore structures. The impact of variations in precursor ratios and amounts of imprint molecule was evaluated. The use of 12.5% of the modified Brij surfactant with a co-condensate employing 30% DEB was found to provide the best compromise between total capacity and selectivity for nitroenergetic targets.
Biochemical and Biophysical Research Communications | 2008
Brandy J. Johnson; Baochuan Lin; Michael A. Dinderman; Robert A. Rubin; Anthony P. Malanoski; Frances S. Ligler
The anti-adhesive effects of cranberry have been attributed to both interactions of its components with the surface of bacterial cells and to inhibition of p-fimbriae expression. Previous reports also suggested that the presence of cranberry juice changed the Gram stain characteristics of Escherichia coli. Here, we show that the morphology of E. coli is changed when grown in the presence of juice or extract from Vaccinium macrocarpon (cranberry). Gene expression analysis indicates the down regulation of flagellar basal body rod and motor proteins. Consistent with this finding and previous reports, the SEM images indicate a decrease in the visible p-fimbriae. The iodine used in Gram-staining protocols was found to interact differently with the bacterial membrane when cells were cultured in spiked media. Slight alterations in the Gram stain protocol demonstrated that culturing in the presence of cranberry juice does not change the Gram stain characteristics contradicting other reports.
Talanta | 2010
Brandy J. Johnson; Brian J. Melde; Paul T. Charles; Michael A. Dinderman; Anthony P. Malanoski; Iwona A. Leska; Syed B. Qadri
Hierarchical organosilicate sorbents were synthesized which possess structure on two length scales: macropores of approximately 1microm lined by mesopores (35-45A). The incorporation of macropores provides enhanced flow-through characteristics over purely mesoporous materials, thereby reducing back pressure when used in column formats. Materials of this type with varied surface groups were applied to the adsorption of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) in both batch and column formats. The results presented here demonstrate the potential of these materials for application as solid phase extraction materials for the pre-concentration of nitroenergetic targets from aqueous solutions. The structural and binding characteristics of the materials have been evaluated and preliminary data on the impact of complex matrices is provided.
Langmuir | 2009
Dan Zabetakis; Peter Loschialpo; Doug Smith; Michael A. Dinderman; Walter J. Dressick
Patterning of metal colloids by inkjet printing on paper is demonstrated as a precursor to electroless metallization. The development of the metal pattern is followed in terms of the conductivity and mass of the metal deposited and is shown to have critical phase behavior. The utility of this technique for large-area microscale patterning is demonstrated. Sample patterns of frequency-selective surface designs were manufactured and shown to conform to computationally modeled expectations in the microwave regime.
PLOS ONE | 2012
Brandy J. Johnson; Brian J. Melde; Michael A. Dinderman; Baochuan Lin
The potential for encapsulating RNA within tunable, semi-permeable structures for storage and transportation purposes offers an interesting approach to the reduction of stringent storage requirements that often hamper the field application of genetic analysis methods. In this study, we assessed the potential for application of functionalized, porous silicate sorbents in maintaining nucleic acid integrity. Mesoporous silica nanoparticles (MSNs) with and without incorporated stabilizing reagents were used to encapsulate triosephosphate isomerase mRNA of Arabidopsis thaliana. The absorption, elution, and the long-term stability of the RNA were monitored by using quantitative real-time RT-PCR. The results indicate that adsorbed RNA can be eluted from the sorbents using simple buffers and employed directly for downstream molecular diagnostic assays without any further processing. RNA integrity can be maintained for extended time periods under refrigeration temperatures in the presence of covalently immobilized stabilizing compounds. This study provides initial evidence of the potential for application of MSNs in transportation and storage. They may also have utility in sample collection and processing in restrictive environments.
Microporous and Mesoporous Materials | 2010
Brian J. Melde; Brandy J. Johnson; Michael A. Dinderman; Jeffrey R. Deschamps
Sensors and Actuators B-chemical | 2011
Scott A. Trammell; Brian J. Melde; Daniel Zabetakis; Jeffrey R. Deschamps; Michael A. Dinderman; Brandy J. Johnson; Anne W. Kusterbeck
Chemistry of Materials | 2006
Michael A. Dinderman; Walter J. Dressick; Cynthia N. Kostelansky; Ronald R. Price; Syed B. Qadri; Paul E. Schoen
Catalysis Communications | 2007
Brandy Johnson-White; Mazyar Zeinali; Anthony P. Malanoski; Michael A. Dinderman