Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brendan R. E. Ansell is active.

Publication


Featured researches published by Brendan R. E. Ansell.


Biotechnology Advances | 2015

Drug resistance in Giardia duodenalis

Brendan R. E. Ansell; Malcolm J. McConville; Showgy Y. Ma'ayeh; Michael J. Dagley; Robin B. Gasser; Staffan G. Svärd; Aaron R. Jex

Giardia duodenalis is a microaerophilic parasite of the human gastrointestinal tract and a major contributor to diarrheal and post-infectious chronic gastrointestinal disease world-wide. Treatment of G. duodenalis infection currently relies on a small number of drug classes. Nitroheterocyclics, in particular metronidazole, have represented the front line treatment for the last 40 years. Nitroheterocyclic-resistant G. duodenalis have been isolated from patients and created in vitro, prompting considerable research into the biomolecular mechanisms of resistance. These compounds are redox-active and are believed to damage proteins and DNA after being activated by oxidoreductase enzymes in metabolically active cells. In this review, we explore the molecular phenotypes of nitroheterocyclic-resistant G. duodenalis described to date in the context of the protists unusual glycolytic and antioxidant systems. We propose that resistance mechanisms are likely to extend well beyond currently described resistance-associated enzymes (i.e., pyruvate ferredoxin oxidoreductases and nitroreductases), to include NAD(P)H- and flavin-generating pathways, and possibly redox-sensitive epigenetic regulation. Mechanisms that allow G. duodenalis to tolerate oxidative stress may lead to resistance against both oxygen and nitroheterocyclics, with implications for clinical control. The present review highlights the potential for systems biology tools and advanced bioinformatics to further investigate the multifaceted mechanisms of nitroheterocyclic resistance in this important pathogen.


International Journal for Parasitology | 2015

Low cost whole-organism screening of compounds for anthelmintic activity.

Sarah Preston; Abdul Jabbar; Cameron J. Nowell; Anja Joachim; Bärbel Ruttkowski; Jonathan B. Baell; Tony Cardno; Pasi K. Korhonen; David Piedrafita; Brendan R. E. Ansell; Aaron R. Jex; Andreas Hofmann; Robin B. Gasser

Due to major problems with drug resistance in parasitic nematodes of animals, there is a substantial need and excellent opportunities to develop new anthelmintics via genomic-guided and/or repurposing approaches. In the present study, we established a practical and cost-effective whole-organism assay for the in vitro-screening of compounds for activity against parasitic stages of the nematode Haemonchus contortus (barbers pole worm). The assay is based on the use of exsheathed L3 (xL3) and L4 stages of H. contortus of small ruminants (sheep and goats). Using this assay, we screened a panel of 522 well-curated kinase inhibitors (GlaxoSmithKline, USA; code: PKIS2) for activity against H. contortus by measuring the inhibition of larval motility using an automated image analysis system. We identified two chemicals within the compound classes biphenyl amides and pyrazolo[1,5-α]pyridines, which reproducibly inhibit both xL3 and L4 motility and development, with IC50s of 14-47 μM. Given that these inhibitors were designed as anti-inflammatory drugs for use in humans and fit the Lipinski rule-of-five (including bioavailability), they show promise for hit-to-lead optimisation and repurposing for use against parasitic nematodes. The screening assay established here has significant advantages over conventional methods, particularly in terms of ease of use, throughput, time and cost. Although not yet fully automated, the current assay is readily suited to the screening of hundreds to thousands of compounds for subsequent hit-to-lead optimisation. The current assay is highly adaptable to many parasites of socioeconomic importance, including those causing neglected tropical diseases. This aspect is of major relevance, given the urgent need to deliver the goals of the London Declaration (http://unitingtocombatntds.org/resource/london-declaration) through the rapid and efficient repurposing of compounds in public-private partnerships.


Nature Communications | 2015

Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions

Clare A. Anstead; Pasi K. Korhonen; Neil D. Young; Ross S. Hall; Aaron R. Jex; Shwetha C. Murali; Daniel S.T. Hughes; Siu F. Lee; Trent Perry; Andreas J. Stroehlein; Brendan R. E. Ansell; Bert Breugelmans; Andreas Hofmann; Jiaxin Qu; Shannon Dugan; Sandra L. Lee; Hsu Chao; Huyen Dinh; Yi Han; Harsha Doddapaneni; Kim C. Worley; Donna M. Muzny; Panagiotis Ioannidis; Robert M. Waterhouse; Evgeny M. Zdobnov; P. J. James; Neil H. Bagnall; Andrew C. Kotze; Richard A. Gibbs; Stephen Richards

Lucilia cuprina is a parasitic fly of major economic importance worldwide. Larvae of this fly invade their animal host, feed on tissues and excretions and progressively cause severe skin disease (myiasis). Here we report the sequence and annotation of the 458-megabase draft genome of Lucilia cuprina. Analyses of this genome and the 14,544 predicted protein-encoding genes provide unique insights into the flys molecular biology, interactions with the host animal and insecticide resistance. These insights have broad implications for designing new methods for the prevention and control of myiasis.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2013

Sulcogyral patterns and morphological abnormalities of the orbitofrontal cortex in psychosis

Cali F. Bartholomeusz; Sarah Whittle; Alice E. Montague; Brendan R. E. Ansell; Patrick D. McGorry; Dennis Velakoulis; Christos Pantelis; Stephen J. Wood

Three types of OFC sulcogyral patterns have been identified in the general population. The distribution of these three types has been found altered in individuals at genetic risk of psychosis, first episode psychosis (FEP) and chronic schizophrenia. The aim of this study was to replicate and extend previous research by additionally investigating: intermediate and posterior orbital sulci, cortical thickness, and degree of gyrification/folding of the OFC, in a large sample of FEP patients and healthy controls. OFC pattern type was classified based on a method previously devised, using T1-weighted magnetic resonance images. Cortical thickness and local gyrification indices were calculated using FreeSurfer. Occurrence of Type I pattern was decreased and Type II pattern was increased in FEP patients for the right hemisphere. Interestingly, controls displayed an OFC pattern type distribution that was disparate to that previously reported. Significantly fewer intermediate orbital sulci were observed in the left hemisphere of patients. Grey matter thickness of orbitofrontal sulci was reduced bilaterally, and left hemisphere reductions were related to OFC pattern type in patients. There was no relationship between pattern type and degree of OFC gyrification. An interaction was found between the number of intermediate orbital sulci and OFC gyrification; however this group difference was specific to only the small subsample of people with three intermediate orbital sulci. Given that cortical folding is largely determined by birth, our findings suggest that Type II pattern may be a neurodevelopmental risk marker while Type I pattern may be somewhat protective. This finding, along with compromised orbitofrontal sulci thickness, may reflect early abnormalities in cortical development and point toward a possible endophenotypic risk marker of schizophrenia-spectrum disorders.


Psychological Medicine | 2015

Divergent effects of first-generation and second-generation antipsychotics on cortical thickness in first-episode psychosis

Brendan R. E. Ansell; Dominic Dwyer; Stephen J. Wood; Emre Bora; Warrick J. Brewer; Tina-Marie Proffitt; Dennis Velakoulis; Patrick D. McGorry; Christos Pantelis

Background Whether there are differential effects of first-generation antipsychotics (FGAs) and second-generation antipsychotics (SGAs) on the brain is currently debated. Although some studies report that FGAs reduce grey matter more than SGAs, others do not, and research to date is limited by a focus on schizophrenia spectrum disorders. To address this limitation, this study investigated the effects of medication in patients being treated for first-episode schizophrenia or affective psychoses. Method Cortical thickness was compared between 52 first-episode psychosis patients separated into diagnostic (i.e. schizophrenia or affective psychosis) and medication (i.e. FGA and SGA) subgroups. Patients in each group were also compared to age- and sex-matched healthy controls (n = 28). A whole-brain cortical thickness interaction analysis of medication and diagnosis was then performed. Correlations between cortical thickness with antipsychotic dose and psychotic symptoms were examined. Results The effects of medication and diagnosis did not interact, suggesting independent effects. Compared with controls, diagnostic differences were found in frontal, parietal and temporal regions. Decreased thickness in FGA-treated versus SGA-treated groups was found in a large frontoparietal region (p < 0.001, corrected). Comparisons with healthy controls revealed decreased cortical thickness in the FGA group whereas the SGA group showed increases in addition to decreases. In FGA-treated patients cortical thinning was associated with higher negative symptoms whereas increased cortical thickness in the SGA-treated group was associated with lower positive symptoms. Conclusions Our results suggest that FGA and SGA treatments have divergent effects on cortical thickness during the first episode of psychosis that are independent from changes due to illness.


Parasites & Vectors | 2015

Transcriptional analysis identifies key genes involved in metabolism, fibrosis/tissue repair and the immune response against Fasciola hepatica in sheep liver

Cristian A. Alvarez Rojas; Brendan R. E. Ansell; Ross S. Hall; Robin B. Gasser; Neil D. Young; Aaron R. Jex; Jean-Pierre Y. Scheerlinck

BackgroundAlthough fascioliasis has been relatively well studied, little is known about the molecular basis of this disease. This is particularly relevant, considering the very different response that sheep have to Fasciola hepatica relative to cattle. The acute phase of this disease is severe in sheep, whereas chronic fascioliasis is more common in cattle.MethodsTo begin to explore the host-response to Fasciola in sheep and improve the understanding of the host-pathogen interactions during the parasite’s migration through liver parenchyma to the bile duct, we used RNA sequencing (RNA-seq) to investigate livers from sheep infected for eight weeks compared with those from uninfected controls.ResultsThis study identified 572 and 42 genes that were up- and down-regulated, respectively, in infected livers relative to uninfected controls. Our molecular findings provide significant new insights into the mechanisms linked to metabolism, fibrosis and tissue-repair in sheep, and highlight the relative importance of specific components of immune response pathways, which appear to be driven toward a suppression of inflammation.ConclusionsThis study is, to our knowledge, the first detailed investigation of the transcriptomic responses in the liver tissue of any host to F. hepatica infection. It defines the involvement of specific genes associated with the host’s metabolism, immune response and tissue repair/regeneration, and highlights an apparent overlapping function of many genes involved in these processes.


PLOS ONE | 2016

Time-Course Study of the Transcriptome of Peripheral Blood Mononuclear Cells (PBMCs) from Sheep Infected with Fasciola hepatica

Cristian A. Alvarez Rojas; Jean-Pierre Y. Scheerlinck; Brendan R. E. Ansell; Ross S. Hall; Robin B. Gasser; Aaron R. Jex

Fasciola hepatica is a parasitic trematode that infects a wide range of mammalian hosts, including livestock and humans, in temperate and tropical regions globally. This trematode causes the disease fascioliasis, which consists of an acute phase (≤ 12 weeks) during which juvenile parasites migrate through the host liver tissues, and a chronic phase (> 12 weeks) following the establishment of adult parasites in the liver bile ducts. Few studies have explored the progression of the host response over the course of Fasciola infection in the same animals. In this study, we characterized transcriptomic changes in peripheral blood mononuclear cells (PBMCs) collected from sheep at three time points over the first eight weeks of infection relative to uninfected controls. In total, 183 and 76 genes were found to be differentially transcribed at two and eight weeks post-infection respectively. Functional and pathway analysis of differentially transcribed genes revealed changes related to T-cell activation that may underpin a Th2-biased immune response against this parasite. This first insight into the dynamics of host responses during the early stages of infection improves the understanding of the pathogenesis of acute fascioliasis, informs vaccine development and presents a set of PBMC markers with diagnostic potential.


Biotechnology Advances | 2013

Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomics—Prospects for new interventions

Brendan R. E. Ansell; Manuela Schnyder; Peter Deplazes; Pasi K. Korhonen; Neil S Young; Ross S. Hall; Stefano Mangiola; Peter R. Boag; Andreas Hofmann; Paul W. Sternberg; Aaron R. Jex; Robin B. Gasser

Angiostrongylus vasorum is a metastrongyloid nematode of dogs and other canids of major clinical importance in many countries. In order to gain first insights into the molecular biology of this worm, we conducted the first large-scale exploration of its transcriptome, and predicted essential molecules linked to metabolic and biological processes as well as host immune responses. We also predicted and prioritized drug targets and drug candidates. Following Illumina sequencing (RNA-seq), 52.3 million sequence reads representing adult A. vasorum were assembled and annotated. The assembly yielded 20,033 contigs, which encoded proteins with 11,505 homologues in Caenorhabditis elegans, and additional 2252 homologues in various other parasitic helminths for which curated data sets were publicly available. Functional annotation was achieved for 11,752 (58.6%) proteins predicted for A. vasorum, including peptidases (4.5%) and peptidase inhibitors (1.6%), protein kinases (1.7%), G protein-coupled receptors (GPCRs) (1.5%) and phosphatases (1.2%). Contigs encoding excretory/secretory and immuno-modulatory proteins represented some of the most highly transcribed molecules, and encoded enzymes that digest haemoglobin were conserved between A. vasorum and other blood-feeding nematodes. Using an essentiality-based approach, drug targets, including neurotransmitter receptors, an important chemosensory ion channel and cysteine proteinase-3 were predicted in A. vasorum, as were associated small molecular inhibitors/activators. Future transcriptomic analyses of all developmental stages of A. vasorum should facilitate deep explorations of the molecular biology of this important parasitic nematode and support the sequencing of its genome. These advances will provide a foundation for exploring immuno-molecular aspects of angiostrongylosis and have the potential to underpin the discovery of new methods of intervention.


PLOS Neglected Tropical Diseases | 2015

Time-Dependent Transcriptional Changes in Axenic Giardia duodenalis Trophozoites

Brendan R. E. Ansell; Malcolm J. McConville; Louise Baker; Pasi K. Korhonen; Neil D. Young; Ross S. Hall; Cristian A. Alvarez Rojas; Staffan G. Svärd; Robin B. Gasser; Aaron R. Jex

Giardia duodenalis is the most common gastrointestinal protozoan parasite of humans and a significant contributor to the global burden of both diarrheal disease and post-infectious chronic disorders. Although G. duodenalis can be cultured axenically, significant gaps exist in our understanding of the molecular biology and metabolism of this pathogen. The present study employed RNA sequencing to characterize the mRNA transcriptome of G. duodenalis trophozoites in axenic culture, at log (48 h of growth), stationary (60 h), and declining (96 h) growth phases. Using ~400-times coverage of the transcriptome, we identified 754 differentially transcribed genes (DTGs), mainly representing two large DTG groups: 438 that were down-regulated in the declining phase relative to log and stationary phases, and 281 that were up-regulated. Differential transcription of prominent antioxidant and glycolytic enzymes implicated oxygen tension as a key factor influencing the transcriptional program of axenic trophozoites. Systematic bioinformatic characterization of numerous DTGs encoding hypothetical proteins of unknown function was achieved using structural homology searching. This powerful approach greatly informed the differential transcription analysis and revealed putative novel antioxidant-coding genes, and the presence of a near-complete two-component-like signaling system that may link cytosolic redox or metabolite sensing to the observed transcriptional changes. Motif searching applied to promoter regions of the two large DTG groups identified different putative transcription factor-binding motifs that may underpin global transcriptional regulation. This study provides new insights into the drivers and potential mediators of transcriptional variation in axenic G. duodenalis and provides context for static transcriptional studies.


Frontiers in Microbiology | 2017

Transcriptomics Indicates Active and Passive Metronidazole Resistance Mechanisms in Three Seminal Giardia Lines

Brendan R. E. Ansell; Louise Baker; Samantha J. Emery; Malcolm J. McConville; Staffan G. Svärd; Robin B. Gasser; Aaron R. Jex

Giardia duodenalis is an intestinal parasite that causes 200-300 million episodes of diarrhoea annually. Metronidazole (Mtz) is a front-line anti-giardial, but treatment failure is common and clinical resistance has been demonstrated. Mtz is thought to be activated within the parasite by oxidoreductase enzymes, and to kill by causing oxidative damage. In G. duodenalis, Mtz resistance involves active and passive mechanisms. Relatively low activity of iron-sulfur binding proteins, namely pyruvate:ferredoxin oxidoreductase (PFOR), ferredoxins, and nitroreductase-1, enable resistant cells to passively avoid Mtz activation. Additionally, low expression of oxygen-detoxification enzymes can allow passive (non-enzymatic) Mtz detoxification via futile redox cycling. In contrast, active resistance mechanisms include complete enzymatic detoxification of the pro-drug by nitroreductase-2 and enhanced repair of oxidized biomolecules via thioredoxin-dependent antioxidant enzymes. Molecular resistance mechanisms may be largely founded on reversible transcriptional changes, as some resistant lines revert to drug sensitivity during drug-free culture in vitro, or passage through the life cycle. To comprehensively characterize these changes, we undertook strand-specific RNA sequencing of three laboratory-derived Mtz-resistant lines, 106-2ID10, 713-M3, and WB-M3, and compared transcription relative to their susceptible parents. Common up-regulated genes encoded variant-specific surface proteins (VSPs), a high cysteine membrane protein, calcium and zinc channels, a Mad-2 cell cycle regulator and a putative fatty acid α-oxidase. Down-regulated genes included nitroreductase-1, putative chromate and quinone reductases, and numerous genes that act proximal to PFOR. Transcriptional changes in 106-2ID10 diverged from those in 713-r and WB-r (r ≤ 0.2), which were more similar to each other (r = 0.47). In 106-2ID10, a nonsense mutation in nitroreductase-1 transcripts could enhance passive resistance whereas increased transcription of nitroreductase-2, and a MATE transmembrane pump system, suggest active drug detoxification and efflux, respectively. By contrast, transcriptional changes in 713-M3 and WB-M3 indicated a higher oxidative stress load, attributed to Mtz- and oxygen-derived radicals, respectively. Quantitative comparisons of orthologous gene transcription between Mtz-resistant G. duodenalis and Trichomonas vaginalis, a closely related parasite, revealed changes in transcripts encoding peroxidases, heat shock proteins, and FMN-binding oxidoreductases, as prominent correlates of resistance. This work provides deep insight into Mtz-resistant G. duodenalis, and illuminates resistance-associated features across parasitic species.

Collaboration


Dive into the Brendan R. E. Ansell's collaboration.

Top Co-Authors

Avatar

Aaron R. Jex

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louise Baker

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross S. Hall

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge