Brian D. Todd
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian D. Todd.
BioScience | 2009
Raymond D. Semlitsch; Brian D. Todd; Sean M. Blomquist; Aram J. K. Calhoun; J. Whitfield Gibbons; James P. Gibbs; Gabrielle J. Graeter; Elizabeth B. Harper; Daniel J. Hocking; Malcolm L. Hunter; David A. Patrick; Tracy A. G. Rittenhouse; Betsie B. Rothermel
Harvesting timber is a common form of land use that has the potential to cause declines in amphibian populations. It is essential to understand the behavior and fate of individuals and the resulting consequences for vital rates (birth, death, immigration, emigration) under different forest management conditions. We report on experimental studies conducted in three regions of the United States to identify mechanisms of responses by pond-breeding amphibians to timber harvest treatments. Our studies demonstrate that life stages related to oviposition and larval performance in the aquatic stage are sometimes affected positively by clearcutting, whereas effects on juvenile and adult terrestrial stages are mostly negative. Partial harvest treatments produced both positive and weaker negative responses than clearcut treatments. Mitigating the detrimental effects of canopy removal, higher surface temperature, and loss of soil-litter moisture in terrestrial habitats surrounding breeding ponds is critical to maintaining viable amphibian populations in managed forested landscapes.
Proceedings of the Royal Society of London B: Biological Sciences | 2011
Brian D. Todd; David E. Scott; Joseph H. K. Pechmann; J. Whitfield Gibbons
Climate change has had a significant impact globally on the timing of ecological events such as reproduction and migration in many species. Here, we examined the phenology of reproductive migrations in 10 amphibian species at a wetland in South Carolina, USA using a 30 year dataset. We show for the first time that two autumn-breeding amphibians are breeding increasingly later in recent years, coincident with an estimated 1.2°C increase in local overnight air temperatures during the September through February pre-breeding and breeding periods. Additionally, two winter-breeding species in the same community are breeding increasingly earlier. Four of the 10 species studied have shifted their reproductive timing an estimated 15.3 to 76.4 days in the past 30 years. This has resulted in rates of phenological change that range from 5.9 to 37.2 days per decade, providing examples of some of the greatest rates of changing phenology in ecological events reported to date. Owing to the opposing direction of the shifts in reproductive timing, our results suggest an alteration in the degree of temporal niche overlap experienced by amphibian larvae in this community. Reproductive timing can drive community dynamics in larval amphibians and our results identify an important pathway by which climate change may affect amphibian communities.
Conservation Biology | 2008
Brian D. Todd; Kimberly M. Andrews
Despite the growing concern over reptile population declines, the effects of modern industrial silviculture on reptiles have been understudied, particularly for diminutive and often overlooked species such as small-bodied snakes. We created 4 replicated forest-management landscapes to determine the response of small snakes to forest harvesting in the Coastal Plain of the southeastern United States. We divided the replicated landscapes into 4 treatments that represented a range of disturbed habitats: clearcut with coarse woody debris removed; clearcut with coarse woody debris retained; thinned pine stand; and control (unharvested second-growth planted pines). Canopy cover and ground litter were significantly reduced in clearcuts, intermediate in thinned forests, and highest in unharvested controls. Bare soil, maximum air temperatures, and understory vegetation all increased with increasing habitat disturbance. Concomitantly, we observed significantly reduced relative abundance of all 6 study species (scarletsnake[Cemophora coccinea], ring-neck snake[Diadophis punctatus], scarlet kingsnake[Lampropeltis triangulum], red-bellied snake[Storeria occipitomaculata], southeastern crowned snake[Tantilla coronata], and smooth earthsnake[Virginia valeriae]) in clearcuts compared with unharvested or thinned pine stands. In contrast, the greatest relative snake abundance occurred in thinned forest stands. Our results demonstrate that at least one form of forest harvesting is compatible with maintaining snake populations. Our results also highlight the importance of open-canopy structure and ground litter to small snakes in southeastern forests and the negative consequences of forest clearcutting for small snakes.
PLOS ONE | 2011
Daniel J. Thornhill; Randi D. Rotjan; Brian D. Todd; Geoff C. Chilcoat; Roberto Iglesias-Prieto; Dustin W. Kemp; Todd C. LaJeunesse; Jennifer McCabe Reynolds; Gregory W. Schmidt; Thomas Shannon; Mark E. Warner; William K. Fitt
Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994–2007), eleven years in the Exuma Cays, Bahamas (1995–2006), and four years in Puerto Morelos, Mexico (2003–2007). For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1–4 m) compared to deeper-dwelling conspecifics (12–15 m). Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels.
Environmental Science & Technology | 2011
Christine M. Bergeron; William A. Hopkins; Brian D. Todd; Mark J. Hepner; Jason M. Unrine
Organisms born into the same contaminated environment as their parents can be exposed both maternally and environmentally to contaminants, potentially placing them at greater risk of adverse effects than when exposed via either of the two pathways independently. We examined whether embryonic exposure to maternally derived mercury (Hg) interacts with dietary exposure to negatively influence larval development in American toads ( Bufo americanus ). We collected eggs from breeding pairs at reference and Hg-contaminated sites and monitored performance, development, and survival of larvae fed three experimental Hg diets (total Hg, 0.01, 2.5, and 10 μg/g). The negative sublethal effects of maternal and/or dietary Hg manifested differently, but maternal Hg exposure had a greater overall influence on offspring health than dietary exposure. However, the combination of sublethal effects of the two exposure routes interacted with lethal consequences; larvae exposed to maternal Hg and high dietary Hg experienced 50% greater mortality compared to larvae from reference mothers fed the control diet. This study is the first to demonstrate that the latent effects of maternally transferred contaminants may be exacerbated by further exposure later in ontogeny, findings that may have important implications for both wildlife and human health.
American Midland Naturalist | 2007
Brian D. Todd; Christopher T. Winne; John D. Willson; J. Whitfield Gibbons
ABSTRACT The evaluation of appropriate sampling methodologies is critical for accurately determining the distribution and status of herpetofaunal populations. We report the results of a year-long drift fence study, using multiple trap types (large pitfall traps, small pitfall traps and funnel traps), of a species-rich herpetofaunal community (59 species) surrounding an isolated wetland in the southeastern United States. Specifically, we determined the effects that timing, trap type and taxon had on capture rates of herpetofauna. We found that funnel traps captured the greatest number of herpetofaunal species, but a combination of funnel traps and large pitfall traps yielded the greatest number of individual captures due to complementary biases in capture efficiencies among herpetofaunal taxa. With little exception, small pitfall traps were relatively ineffective for sampling herpetofauna. We also found that the timing of drift fence monitoring affected herpetofaunal species accumulation rates but that seasonal effects were taxon-specific. Our study affirms that drift fences are exceptional tools for inventorying and monitoring diverse species and large numbers of herpetofauna and also demonstrates the important effects that season and taxon can have on capture rates. Therefore, we recommend a priori delineation of project goals and the use of multiple trap types with careful attention to the timing of drift fence monitoring to maximize sampling efficiency and minimize biases associated with data collection.
Copeia | 2007
Christopher T. Winne; John D. Willson; Brian D. Todd; Kimberly M. Andrews; J. Whitfield Gibbons
Abstract Although recent reports of global amphibian declines have received considerable attention, reptile declines have gone largely unreported. Among reptiles, snakes are particularly difficult to quantitatively sample, and thus, most reports of snake declines are based on qualitative or anecdotal evidence. Recently, several sources have suggested that Eastern Kingsnakes (Lampropeltis getula) have declined over a substantial portion of their range in the southeastern United States, particularly in Florida. However, published evidence for L. getula declines or their potential causes are limited. We monitored the status of a population of L. getula on the U.S. Department of Energys Savannah River Site (SRS) in Aiken, South Carolina, USA, from 1975 to 2006. Herpetofaunal populations on the Savannah River Site have been protected from the pressures of collecting and development since 1951 due to site access restrictions. Here, we document a decline in both abundance and body condition of L. getula inhabiting the vicinity of a large isolated wetland over the past three decades. Because this L. getula population was protected from anthropogenic habitat degradation, collection, and road mortality, we are able to exclude these factors as possible causes of the documented decline. Although the definitive cause of the decline remains enigmatic, natural succession of the surrounding uplands, periodic extreme droughts, shifts in community composition (e.g., increased Agkistrodon piscivorus abundance), introduced fire ants, or disease are all potential contributors to the decline.
The American Naturalist | 2007
Brian D. Todd
Amphibians exhibit the greatest diversity of reproductive strategies of all tetrapod vertebrates. While authors have traditionally attributed the evolution of these strategies to factors such as complex topography, unpredictable larval environments, and predation on larvae and eggs, support for any of these hypotheses has been limited. Importantly, most authors have ignored parasites, including unicellular pathogens and multicellular parasites, as selective agents capable of influencing amphibian evolution. Insights in disease transmission, amphibian immunity, and their interaction with various life histories require that we consider parasites to be selective pressures in our exploration of the evolution of amphibian reproductive strategies. I review recent findings and describe how these principles converge to form a novel conceptual hypothesis for the evolution of alternative reproductive strategies in amphibians. I offer some specific predictions and recommend that parasites be considered with other selective pressures when constructing formal, falsifiable hypotheses during evaluative studies of amphibian reproductive behavior.
Journal of Wildlife Management | 2011
John D. Willson; Christopher T. Winne; Brian D. Todd
ABSTRACT Although mark-recapture methods are among the most powerful tools for monitoring wildlife populations, the secretive nature of some species requires a comprehensive understanding of the factors that affect capture probability to maximize accuracy and precision of population parameter estimates (e.g., population size and survivorship). Here, we used aquatic snakes as a case study in applying rigorous mark-recapture methods to estimate population parameters for secretive species. Specifically, we used intensive field sampling and robust design mark-recapture analyses in Program MARK to test specific hypotheses about ecological and methodological factors influencing detectability of two species of secretive aquatic snakes, the banded watersnake (Nerodia fasciata), and the black swamp snake (Seminatrix pygaea). We constructed a candidate set of a priori mark-recapture models incorporating various combinations of time- and sex-varying capture and recapture probabilities, behavioral responses to traps (i.e., trap-happiness or trap-shyness), and temporary emigration, and we ranked models for each species using Akaikes Information Criterion. For both banded watersnakes and black swamp snakes we found strong support for time-varying capture and recapture probabilities and strong trap-happy responses, factors that can bias population estimation if not accommodated in the models. We also found evidence of sex-dependent temporary emigration in black swamp snakes. Our study is among the first comprehensive assessments of factors affecting detectability in snakes and provides a framework for studies aimed at monitoring populations of other secretive species.
Ecological Applications | 2012
John D. Willson; William A. Hopkins; Christine M. Bergeron; Brian D. Todd
Concern that environmental contaminants contribute to global amphibian population declines has prompted extensive experimental investigation, but individual-level experimental results have seldom been translated to population-level processes. We used our research on the effects of mercury (Hg) on American toads (Bufo americanus) as a model for bridging the gap between individual-level contaminant effects and amphibian population viability. We synthesized the results of previous field and laboratory studies examining effects of Hg throughout the life cycle of B. americanus and constructed a comprehensive demographic population model to evaluate the consequences of Hg exposure on population dynamics. Our model explicitly considered density-dependent larval survival, which is known to be an important driver of amphibian population dynamics, and incorporated two important factors that have seldom been considered in previous amphibian modeling studies: environmental stochasticity and sublethal effects. We demonstrated that decreases in embryonic survival and sublethal effects (e.g., reduced body size) that delay maturation have minor effects on population dynamics, whereas contaminant effects that reduce late-larval or post-metamorphic survival have important population-level consequences. We found that excessive Hg exposure through maternal transfer or larval diet, alone, had minor effects on B. americanus populations. Simultaneous maternal and dietary exposure resulted in reduced population size and a dramatic increase in extinction probability, but explicit prediction of population-level effects was dependent on the strength of larval density dependence. Our results suggest that environmental contaminants can influence amphibian population viability, but that highly integrative approaches are needed to translate individual-level effects to populations.