Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine M. Bergeron is active.

Publication


Featured researches published by Christine M. Bergeron.


Environmental Toxicology and Chemistry | 2007

Influence of feeding ecology on blood mercury concentrations in four species of turtles

Christine M. Bergeron; Jerry F. Husak; Jason M. Unrine; Christopher S. Romanek; William A. Hopkins

Mercury is a relatively well-studied pollutant because of its global distribution, toxicity, and ability to bioaccumulate and biomagnify in food webs: however, little is known about bioaccumulation and toxicity of Hg in turtles. Total Hg (THg) concentrations in blood were determined for 552 turtles representing four different species (Chelydra serpentina, Sternotherus odoratus, Chrysemys picta, and Pseudemys rubriventris) from a Hg-contaminated site on the South River (VA, USA) and upstream reference sites. Methylmercury and Se concentrations also were determined in a subset of samples. Because the feeding ecology of these species differs drastically, stable isotopes of carbon (delta13C) and nitrogen (delta15N) were employed to infer the relationship between relative trophic position and Hg concentrations. Significant differences were found among sites and species, suggesting that blood can be used as a bioindicator of Hg exposure in turtles. We found differences in THg concentrations in turtles from the contaminated site that were consistent with their known feeding ecology: C. serpentina > or = S. odoratus > C. picta > P. rubriventris. This trend was generally supported by the isotope data, which suggested that individual turtles were feeding at more than one trophic level. Methylmercury followed similar spatial patterns as THg and was the predominant Hg species in blood for all turtles. Blood Se concentrations were low in the system, but a marginally positive relationship was found between THg and Se when species were pooled. The blood THg concentrations for the turtles in the present study are some of the highest reported in reptiles, necessitating further studies to investigate potential adverse effects of these high concentrations.


Environmental Science & Technology | 2011

Interactive effects of maternal and dietary mercury exposure have latent and lethal consequences for amphibian larvae

Christine M. Bergeron; William A. Hopkins; Brian D. Todd; Mark J. Hepner; Jason M. Unrine

Organisms born into the same contaminated environment as their parents can be exposed both maternally and environmentally to contaminants, potentially placing them at greater risk of adverse effects than when exposed via either of the two pathways independently. We examined whether embryonic exposure to maternally derived mercury (Hg) interacts with dietary exposure to negatively influence larval development in American toads ( Bufo americanus ). We collected eggs from breeding pairs at reference and Hg-contaminated sites and monitored performance, development, and survival of larvae fed three experimental Hg diets (total Hg, 0.01, 2.5, and 10 μg/g). The negative sublethal effects of maternal and/or dietary Hg manifested differently, but maternal Hg exposure had a greater overall influence on offspring health than dietary exposure. However, the combination of sublethal effects of the two exposure routes interacted with lethal consequences; larvae exposed to maternal Hg and high dietary Hg experienced 50% greater mortality compared to larvae from reference mothers fed the control diet. This study is the first to demonstrate that the latent effects of maternally transferred contaminants may be exacerbated by further exposure later in ontogeny, findings that may have important implications for both wildlife and human health.


Environmental Toxicology and Chemistry | 2010

Mercury accumulation along a contamination gradient and nondestructive indices of bioaccumulation in amphibians.

Christine M. Bergeron; Catherine M. Bodinof; Jason M. Unrine; William A. Hopkins

Mercury (Hg) is an important environmental contaminant due to its global distribution, tendency to bioaccumulate, and toxicity in wildlife. However, Hg has received little attention in amphibians compared to other vertebrates. Amphibians vary widely in life history strategies and feeding ecologies, which could influence Hg exposure and accumulation. To determine whether species and life stage affects Hg bioaccumulation, adults from three species (Plethodon cinereus, Eurycea bislineata, and Bufo americanus) and larvae from the latter two species were collected along a contamination gradient on the South River (VA, USA). Total Hg (THg) concentrations in the contaminated site were 3.5 to 22 times higher than in the reference site. Differences were found in THg concentrations in amphibians that were consistent with their habitat requirements and feeding preferences. In general, adults (3,453 +/- 196 ng/g, dry mass) and larvae (2,479 +/- 171 ng/g) of the most river-associated species, E. bislineata, had the highest THg concentrations, followed by B. americanus tadpoles (2,132 +/- 602 ng/g), whereas adults of the more terrestrial B. americanus (598 +/- 117 ng/g) and P. cinereus (583 +/- 178 ng/g) had the lowest concentrations. In addition, nondestructive sampling techniques were developed. For the salamander species, THg concentrations in tail tissue were strongly correlated (r >or= 0.97) with the remaining carcass. A strong positive correlation (r = 0.92) also existed between blood and whole-body THg concentrations in B. americanus. These results suggest that amphibians and their terrestrial predators may be at risk of Hg exposure in this system and that nondestructive methods may be a viable sampling alternative that reduces impacts to local populations.


Ecological Applications | 2012

Making leaps in amphibian ecotoxicology: translating individual‐level effects of contaminants to population viability

John D. Willson; William A. Hopkins; Christine M. Bergeron; Brian D. Todd

Concern that environmental contaminants contribute to global amphibian population declines has prompted extensive experimental investigation, but individual-level experimental results have seldom been translated to population-level processes. We used our research on the effects of mercury (Hg) on American toads (Bufo americanus) as a model for bridging the gap between individual-level contaminant effects and amphibian population viability. We synthesized the results of previous field and laboratory studies examining effects of Hg throughout the life cycle of B. americanus and constructed a comprehensive demographic population model to evaluate the consequences of Hg exposure on population dynamics. Our model explicitly considered density-dependent larval survival, which is known to be an important driver of amphibian population dynamics, and incorporated two important factors that have seldom been considered in previous amphibian modeling studies: environmental stochasticity and sublethal effects. We demonstrated that decreases in embryonic survival and sublethal effects (e.g., reduced body size) that delay maturation have minor effects on population dynamics, whereas contaminant effects that reduce late-larval or post-metamorphic survival have important population-level consequences. We found that excessive Hg exposure through maternal transfer or larval diet, alone, had minor effects on B. americanus populations. Simultaneous maternal and dietary exposure resulted in reduced population size and a dramatic increase in extinction probability, but explicit prediction of population-level effects was dependent on the strength of larval density dependence. Our results suggest that environmental contaminants can influence amphibian population viability, but that highly integrative approaches are needed to translate individual-level effects to populations.


Environmental Toxicology and Chemistry | 2011

Aquatic and terrestrial stressors in amphibians: A test of the double jeopardy hypothesis based on maternally and trophically derived contaminants

Brian D. Todd; Christine M. Bergeron; Mark J. Hepner; William A. Hopkins

Amphibians with biphasic life histories occupy aquatic and terrestrial habitats at different times in their lives, leading to a double jeopardy of contaminant risk in both habitats. The present study examines individual and interactive effects of mercury exposure to terrestrial adults and aquatic larvae on fitness-related traits of American toads, Bufo americanus. Eggs from reference mothers or contaminated mothers were allowed to hatch and larvae were fed diets of either no added Hg or 2.5 or 10 µg/g total Hg (dry wt). Both dietary and maternal Hg had adverse effects on developing larvae, but there was no interaction between these factors. Dietary Hg had a marginal effect of decreased survival with increasing Hg in the diet. Animals from Hg-exposed mothers weighed 14% less than those from reference mothers, and size at metamorphosis was directly correlated with hopping performance. Animals from Hg-exposed mothers also took longer to complete metamorphosis and had 2.5 times the prevalence of spinal malformations compared with those from reference mothers. Results of the present study demonstrate that amphibians do indeed face a double jeopardy of contaminant exposure stemming from terrestrial and aquatic environments, because both exposure pathways adversely affected developing offspring. The present study also demonstrates that all possible routes of exposure over an organisms life history must be examined to provide a comprehensive picture of the ecological consequences of habitat contamination.


Environmental Pollution | 2010

Effects of mercury on behavior and performance of northern two-lined salamanders (Eurycea bislineata)

John N. Burke; Christine M. Bergeron; Brian D. Todd; William A. Hopkins

Mercury (Hg) causes a range of deleterious effects in wildlife, but little is known about its effects on amphibians. Our objective was to determine whether Hg affects performance and behavior in two-lined salamanders (Eurycea bislineata). We collected salamanders from Hg-contaminated and reference sites and assessed speed, responsiveness, and prey capture ability. Mercury concentrations were >17× higher in salamanders from the contaminated sites and were among the highest documented in amphibians. In the first, but not in the second, locomotion trial, we found a significant effect of Hg on speed and responsiveness. In the prey capture experiment, reference salamanders ate approximately twice as many prey items as the contaminated salamanders. Together, our results suggest that sublethal Hg concentrations may negatively affect salamanders by reducing their ability to successfully execute tasks critical to survival. Future work is warranted to determine whether Hg has other sublethal effects on salamanders and whether other amphibians are similarly affected.


Oecologia | 2011

Does maternal exposure to an environmental stressor affect offspring response to predators

Brian D. Todd; Christine M. Bergeron; Mark J. Hepner; John N. Burke; William A. Hopkins

There is growing recognition of the ways in which maternal effects can influence offspring size, physiological performance, and survival. Additionally, environmental contaminants increasingly act as stressors in maternal environments, possibly leading to maternal effects on subsequent offspring. Thus, it is important to determine whether contaminants and other stressors can contribute to maternal effects, particularly under varied ecological conditions that encompass the range under which offspring develop. We used aquatic mesocosms to determine whether maternal effects of mercury (Hg) exposure shape offspring phenotype in the American toad (Bufo americanus) in the presence or absence of larval predators (dragonfly naiads). We found significant maternal effects of Hg exposure and significant effects of predators on several offspring traits, but there was little evidence that maternal effects altered offspring interactions with predators. Offspring from Hg-exposed mothers were 18% smaller than those of reference mothers. Offspring reared with predators were 23% smaller at metamorphosis than those reared without predators. There was also evidence of reduced larval survival when larvae were reared with predators, but this was independent of maternal effects. Additionally, 5 times more larvae had spinal malformations when reared without predators, suggesting selective predation of malformed larvae by predators. Lastly, we found a significant negative correlation between offspring survival and algal density in mesocosms, indicating a role for top-down effects of predators on periphyton communities. Our results demonstrate that maternal exposure to an environmental stressor can induce phenotypic responses in offspring in a direction similar to that produced by direct exposure of offspring to predators.


Science of The Total Environment | 2011

Counterbalancing effects of maternal mercury exposure during different stages of early ontogeny in American toads.

Christine M. Bergeron; William A. Hopkins; Catherine M. Bodinof; Sarah A. Budischak; Haruka Wada; Jason M. Unrine

Maternal transfer of environmental contaminants is a disadvantageous parental effect which can have long-lasting implications for offspring fitness. We investigated the effects of mercury (Hg) on the reproductive success of female amphibians and the subsequent effects of maternal transfer on the development of their offspring. American toads (Bufo americanus) maternally transferred Hg to their eggs, and there was a negative relationship between Hg concentrations and the percentage of viable hatchlings produced in clutches. However, when we continued to monitor larvae that successfully hatched, we found 21% greater metamorphic success in larvae from Hg-exposed mothers compared to reference larvae. The negative effect in the embryonic stage and positive effect in the larval stage counterbalanced one another, ultimately resulting in no difference in predicted terrestrial recruitment, regardless of maternal Hg exposure. Our findings demonstrate that maternal effects on survival manifesting at different stages in ontogeny have the potential to produce complicated outcomes.


Ecotoxicology | 2012

Use of toe clips as a nonlethal index of mercury accumulation and maternal transfer in amphibians

Brian D. Todd; Christine M. Bergeron; William A. Hopkins

Nonlethal indices of contaminant exposure can facilitate research on the accumulation and effects of contaminants in wildlife. Here, we tested the efficacy of using amputated toes (“toe clips”), a common byproduct when marking amphibians in population and genetic studies, to determine mercury (Hg) concentrations in amphibians. We examined total mercury (THg) concentrations in American toads (Bufo americanus) collected along a contamination gradient at a Hg-contaminated field site. We found significant positive correlations between toe THg and blood THg concentrations in adult males and females collected in two different years. We also found that blood and toe clips could be used to predict maternal transfer of Hg, an important mechanism of reproductive toxicity in wildlife. Maternal toe THg concentrations were more highly correlated with egg THg concentrations than were maternal blood THg concentrations. Our results indicate that amputated toes are effective for identifying Hg concentrations in amphibians.


Environmental Science & Technology | 2011

Dietary Mercury Has No Observable Effects on Thyroid-Mediated Processes and Fitness-Related Traits in Wood Frogs

Haruka Wada; Christine M. Bergeron; F.M. Anne McNabb; Brian D. Todd; William A. Hopkins

Mercury (Hg) is a neurotoxicant known to cause developmental and behavioral abnormalities in vertebrates. Increasing evidence suggests that Hg can also disrupt endocrine functions and endocrine-dependent processes. For example, dietary Hg has been shown to delay tail resorption during metamorphic climax in amphibians, a process mediated by thyroid hormones. However, a direct link between Hg, hormone disruption, and developmental delays in amphibians has not been explored. Therefore, we examined the effects of dietary Hg (0.01, 2.5, and 10 μg/g total Hg, dry wt) on thyroid hormone concentrations, development, growth, performance, and survival of wood frogs (Rana sylvatica). Tadpoles accumulated Hg in a concentration-dependent manner; total Hg concentrations in tadpoles at the beginning of metamorphic climax (Gosner stage 42) were 0.03, 1.06, 3.54 μg/g, dry wt, for control, low, and high Hg diets, respectively. During metamorphic climax, tadpoles eliminated 35% of the inorganic Hg from their tissues but retained most of their accumulated methylmercury. Contrary to our predictions, we found no effect of Hg on the duration of tadpole development, size at metamorphosis, tail resorption time, or hopping performance. Consistent with the lack of effects on development, we also detected no differences in whole-body thyroid hormone concentrations among our dietary treatments. Our results, when compared with the effects of Hg on other amphibians, suggest that amphibian species may differ substantially in their sensitivity to dietary Hg, emphasizing the need for data on multiple species when establishing toxicity benchmarks.

Collaboration


Dive into the Christine M. Bergeron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian D. Todd

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damian Shea

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge