Brian E. Reichert
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian E. Reichert.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Robert J. Fletcher; Miguel A. Acevedo; Brian E. Reichert; Kyle E. Pias; Wiley M. Kitchens
Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.
Nature Communications | 2013
Robert J. Fletcher; Andre Revell; Brian E. Reichert; Wiley M. Kitchens; Jeremy D. Dixon; James D. Austin
For nearly a century, biologists have emphasized the profound importance of spatial scale for ecology, evolution and conservation. Nonetheless, objectively identifying critical scales has proven incredibly challenging. Here we extend new techniques from physics and social sciences that estimate modularity on networks to identify critical scales for movement and gene flow in animals. Using four species that vary widely in dispersal ability and include both mark-recapture and population genetic data, we identify significant modularity in three species, two of which cannot be explained by geographic distance alone. Importantly, the inclusion of modularity in connectivity and population viability assessments alters conclusions regarding patch importance to connectivity and suggests higher metapopulation viability than when ignoring this hidden spatial scale. We argue that network modularity reveals critical meso-scales that are probably common in populations, providing a powerful means of identifying fundamental scales for biology and for conservation strategies aimed at recovering imperilled species.
Ecology | 2012
Brian E. Reichert; Christopher E. Cattau; Robert J. Fletcher; William L. Kendall; Wiley M. Kitchens
Extreme weather events, such as droughts and heat waves, are expected to become more severe and more frequent in the coming years, and understanding their impacts on demographic rates is of increasing interest to both evolutionary ecologists and conservation practitioners. An individuals breeding probability can be a sensitive indicator of the decision to initiate reproductive behavior under varying environmental conditions, has strong fitness consequences, and can be considered the first step in a life history trade-off between allocating resources for breeding activities or self-survival. Using a 14-year time series spanning large variation in climatic conditions and the entirety of a populations breeding range, we estimated the effects of extreme weather conditions (drought) on the state-specific probabilities of breeding and survival of an endangered bird, the Florida Snail Kite (Rostrhamus sociabilis plumbeus). Our analysis accounted for uncertainty in breeding status assignment, a common source of uncertainty that is often ignored when states are based on field observations. Breeding probabilities in adult kites (> 1 year of age) decreased during droughts, whereas the probability of breeding in young kites (1 year of age) tended to increase. Individuals attempting to breed showed no evidence of reduced future survival. Although population viability analyses of this species and other species often implicitly assume that all adults will attempt to breed, we find that breeding probabilities were significantly < 1 for all 13 estimable years considered. Our results suggest that experience is an important factor determining whether or not individuals attempt to breed during harsh environmental conditions and that reproductive effort may be constrained by an individuals quality and/or despotic behavior among individuals attempting to breed.
Proceedings of the Royal Society B: Biological Sciences | 2015
Robert J. Fletcher; Ellen P. Robertson; Rebecca C. Wilcox; Brian E. Reichert; James D. Austin; Wiley M. Kitchens
Understanding dispersal and habitat selection behaviours is central to many problems in ecology, evolution and conservation. One factor often hypothesized to influence habitat selection by dispersers is the natal environment experienced by juveniles. Nonetheless, evidence for the effect of natal environment on dispersing, wild vertebrates remains limited. Using 18 years of nesting and mark–resight data across an entire North American geographical range of an endangered bird, the snail kite (Rostrhamus sociabilis), we tested for natal effects on breeding-site selection by dispersers and its consequences for reproductive success and population structure. Dispersing snail kites were more likely to nest in wetlands of the same habitat type (lacustrine or palustrine) as their natal wetland, independent of dispersal distance, but this preference declined with age and if individuals were born during droughts. Importantly, dispersing kites that bred in natal-like habitats had lower nest success and productivity than kites that did not. These behaviours help explain recently described population connectivity and spatial structure across their geographical range and reveal that assortative breeding is occurring, where birds are more likely to breed with individuals born in the same wetland type as their natal habitat. Natal environments can thus have long-term and large-scale effects on populations in nature, even in highly mobile animals.
Journal of Animal Ecology | 2016
Brian E. Reichert; Robert J. Fletcher; Christopher E. Cattau; Wiley M. Kitchens
Understanding the spatial scale of population structure is fundamental to long-standing tenets of population biology, landscape ecology and conservation. Nonetheless, identifying such scales has been challenging because a key factor that influences scaling - movement among patches or local populations - is a multicausal process with substantial phenotypic and temporal variation. We resolve this problem via a novel application of network modularity. When applied to movements, modularity provides a formal description of the functional aggregation of populations and identifies potentially critical scales for ecological and evolutionary dynamics. We first test for modularity using several different types of biologically relevant movements across the entire geographic range of an endangered bird, the snail kite (Rostrhamus sociabilis plumbeus). We then ask whether variation in movement based on (i) age, (ii) sex and (iii) time (annual, seasonal and within-season movements) influences spatial population structure (i.e. modularity) in snail kites. We identified significant modularity in annual dispersal of snail kites (all adults, males only, females only, and juveniles only) and in within-breeding season movements of adults, yet no evidence of modularity in seasonal (non-breeding) movements. For those movements with observed modular structure, we found striking similarities in the spatial configuration of population structure, even though movement properties varied considerably among these different types of movements. Our results suggest that the emergence of modularity in population networks can be robust despite movement heterogeneity and differences in patch-based measures of connectivity. Furthermore, our comparison of the population structure and connectivity across multiple movement phases helps to identify wetland patches most critical to population connectivity at multiple spatiotemporal scales. We argue that understanding modularity in populations may provide a robust complement to existing measures of population structure and connectivity and will help to clarify the limiting roles of movement for populations. Such information is increasingly needed for interpreting population persistence and guiding effective conservation strategies with ongoing environmental change.
Scientific Reports | 2017
Denis Valle; Sreten Cvetojevic; Ellen P. Robertson; Brian E. Reichert; Hartwig H. Hochmair; Robert J. Fletcher
Understanding movement is critical in several disciplines but analysis methods often neglect key information by adopting each location as sampling unit, rather than each individual. We introduce a novel statistical method that, by focusing on individuals, enables better identification of temporal dynamics of connectivity, traits of individuals that explain emergent movement patterns, and sites that play a critical role in connecting subpopulations. We apply this method to two examples that span movement networks that vary considerably in size and questions: movements of an endangered raptor, the snail kite (Rostrhamus sociabilis plumbeus), and human movement in Florida inferred from Twitter. For snail kites, our method reveals substantial differences in movement strategies for different bird cohorts and temporal changes in connectivity driven by the invasion of an exotic food resource, illustrating the challenge of identifying critical connectivity sites for conservation in the presence of global change. For human movement, our method is able to reliably determine the origin of Florida visitors and identify distinct movement patterns within Florida for visitors from different places, providing near real-time information on the spatial and temporal patterns of tourists. These results emphasize the need to integrate individual variation to generate new insights when modeling movement data.
PLOS ONE | 2016
Brian E. Reichert; William L. Kendall; Robert J. Fletcher; Wiley M. Kitchens
While variation in age structure over time and space has long been considered important for population dynamics and conservation, reliable estimates of such spatio-temporal variation in age structure have been elusive for wild vertebrate populations. This limitation has arisen because of problems of imperfect detection, the potential for temporary emigration impacting assessments of age structure, and limited information on age. However, identifying patterns in age structure is important for making reliable predictions of both short- and long-term dynamics of populations of conservation concern. Using a multistate superpopulation estimator, we estimated region-specific abundance and age structure (the proportion of individuals within each age class) of a highly endangered population of snail kites for two separate regions in Florida over 17 years (1997–2013). We find that in the southern region of the snail kite—a region known to be critical for the long-term persistence of the species—the population has declined significantly since 1997, and during this time, it has increasingly become dominated by older snail kites (> 12 years old). In contrast, in the northern region—a region historically thought to serve primarily as drought refugia—the population has increased significantly since 2007 and age structure is more evenly distributed among age classes. Given that snail kites show senescence at approximately 13 years of age, where individuals suffer higher mortality rates and lower breeding rates, these results reveal an alarming trend for the southern region. Our work illustrates the importance of accounting for spatial structure when assessing changes in abundance and age distribution and the need for monitoring of age structure in imperiled species.
Journal of Applied Ecology | 2015
Miguel A. Acevedo; Jorge A. Sefair; J. Cole Smith; Brian E. Reichert; Robert J. Fletcher
Summary 1. Conservation goals are ideally set after a thorough understanding of potential threats; however, predicting future spatial patterns of threats, such as disturbance, remains challenging. Here, we develop a novel extension of network fortification‐interdiction models (NFIM) that deals with uncertainty in future spatial patterns of disturbance by optimally selecting sites that will best mitigate a worst-case scenario for a given magnitude of disturbance. 2. This approach uses information on between-patch movement probabilities and patchspecific survival, which can be estimated from mark–recapture data, to optimize life expectancy. Optimization occurs in three interrelated stages: protection, followed by disturbance and then assessment. 3. We applied the modelling approach to two mark–recapture data sets: roseate terns Sterna dougallii in the north-eastern United States and the Everglade snail kite Rostrhamus sociabilis plumbeus in Florida. We contrasted the results to a more conventional approach of protecting sites that maximize connectivity (by minimizing the distances among protected sites) and a biobjective model that maximizes connectivity and the number of individuals under protection. 4. Protecting sites that best mitigate future worst-case disturbance scenarios consistently resulted in higher predicted life expectancies than protecting patches that minimize dispersal distance. Predicted life expectancy was similar between NFIM and the bi-objective model for the small roseate tern network, yet the NFIM predicted higher life expectancy than any of the scenarios in the bi-objective model in the snail kite network. 5. Synthesis and applications. This application of interdiction models prescribed a combination of patches for protection that results in the least possible decrease in life expectancy. Our analyses of the snail kite and roseate tern networks suggest that managing to protect these prescribed patches by the network fortification -interdiction models (i.e. protecting against the worst-case disturbance scenario) is more beneficial than managing patches that minimize dispersal distance or maximize the number of individuals under protection if the conservation goal is to ensure the long-term persistence of a species.
Ecosphere | 2011
Christa L. Zweig; Brian E. Reichert; Wiley M. Kitchens
Large wetlands around the world face the possibility of degradation, not only from complete conversion, but also from subtle changes in their structure and function. While fragmentation and isolation of wetlands within heterogeneous landscapes has received much attention, the disruption of spatial patterns/processes within large wetland systems and the resulting fragmentation of community components are less well documented. A greater understanding of pattern/process relationships and landscape gradients, and what occurs when they are altered, could help avoid undesirable consequences of restoration actions. The objective of this study is to determine the amount of fragmentation of sawgrass ridges due to artificial impoundment of water and how that may be differentially affected by spatial position relative to north and south levees. We also introduce groundbreaking evidence of landscape-level discontinuous elevation gradients within WCA3AS by comparing generalized linear and generalized additive models. These relatively abrupt breaks in elevation may have non-linear effects on hydrology and vegetation communities and would be crucial in restoration considerations. Modeling suggests there are abrupt breaks in elevation as a function of northing (Y-coordinate). Fragmentation indices indicate that fragmentation is a function of elevation and easting (X-coordinate), and that fragmentation has increased from 1988–2002. When landscapes change and the changes are compounded by non-linear landscape variables that are described herein, the maintenance processes change with them, creating a degraded feedback loop that alters the systems response to structuring variables and diminishes our ability to predict the effects of restoration projects or climate change. Only when these landscape variables and linkages are clearly defined can we predict the response to potential perturbations and apply the knowledge to other landscape-level wetland systems in need of future restoration.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Ellen P. Robertson; Robert J. Fletcher; Christopher E. Cattau; Bradley J. Udell; Brian E. Reichert; James D. Austin; Denis Valle
Significance Animal movement has captured the interest of biologists over the past century. Although animal movement is increasingly well understood, it is unclear how postmovement reproduction varies across landscapes despite its important role in many ecological and evolutionary processes. We address this problem by isolating the roles of movement and postmovement reproduction for connecting local populations using 9 years of data on an endangered bird across its entire geographic range. Our findings highlight the important role that postmovement reproduction can play for connecting animal populations across landscapes. Movement is important for ecological and evolutionary theory as well as connectivity conservation, which is increasingly critical for species responding to environmental change. Key ecological and evolutionary outcomes of movement, such as population growth and gene flow, require effective dispersal: movement that is followed by successful reproduction. However, the relative roles of movement and postmovement reproduction for effective dispersal and connectivity remain unclear. Here we isolate the contributions of movement and immigrant reproduction to effective dispersal and connectivity across the entire breeding range of an endangered raptor, the snail kite (Rostrhamus sociabilis plumbeus). To do so, we unite mark–resight data on movement and reproduction across 9 years and 27 breeding patches with an integrated model that decomposes effective dispersal into its hierarchical levels of movement, postmovement breeding attempt, and postmovement reproductive success. We found that immigrant reproduction limits effective dispersal more than movement for this endangered species, demonstrating that even highly mobile species may have limited effective connectivity due to reduced immigrant reproduction. We found different environmental limitations for the reproductive component of effective dispersal compared with movement, indicating that different conservation strategies may be needed when promoting effective dispersal rather than movement alone. We also demonstrate that considering immigrant reproduction, rather than movement alone, alters which patches are the most essential for connectivity, thereby changing conservation priorities. These results challenge the assumption that understanding movement alone is sufficient to infer connectivity and highlight that connectivity conservation may require not only fostering movement but also successful reproduction of immigrants.