Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian J. Fahey is active.

Publication


Featured researches published by Brian J. Fahey.


Physics in Medicine and Biology | 2008

In vivo visualization of abdominal malignancies with acoustic radiation force elastography

Brian J. Fahey; Rendon C. Nelson; David Bradway; Stephen J. Hsu; Douglas M. Dumont; Gregg E. Trahey

The utility of acoustic radiation force impulse (ARFI) imaging for real-time visualization of abdominal malignancies was investigated. Nine patients presenting with suspicious masses in the liver (n = 7) or kidney (n = 2) underwent combined sonography/ARFI imaging. Images were acquired of a total of 12 tumors in the nine patients. In all cases, boundary definition in ARFI images was improved or equivalent to boundary definition in B-mode images. Displacement contrast in ARFI images was superior to echo contrast in B-mode images for each tumor. The mean contrast for suspected hepatocellular carcinomas (HCCs) in B-mode images was 2.9 dB (range: 1.5-4.2) versus 7.5 dB (range: 3.1-11.9) in ARFI images, with all HCCs appearing more compliant than regional cirrhotic liver parenchyma. The mean contrast for metastases in B-mode images was 3.1 dB (range: 1.2-5.2) versus 9.3 dB (range: 5.7-13.9) in ARFI images, with all masses appearing less compliant than regional non-cirrhotic liver parenchyma. ARFI image contrast (10.4 dB) was superior to B-mode contrast (0.9 dB) for a renal mass. To our knowledge, we present the first in vivo images of abdominal malignancies in humans acquired with the ARFI method or any other technique of imaging tissue elasticity.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2005

Acoustic radiation force impulse imaging of myocardial radiofrequency ablation: initial in vivo results

Brian J. Fahey; Kathryn R. Nightingale; Stephen A. McAleavey; Mark L. Palmeri; Patrick D. Wolf; Gregg E. Trahey

Acoustic radiation force impulse (ARFI) imaging techniques were used to monitor radiofrequency (RF) ablation of ovine cardiac tissue in vivo. Additionally, ARFI M-mode imaging methods were used to interrogate both healthy and ablated regions of myocardial tissue. Although induced cardiac lesions were not visualized well in conventional B-mode images, ARFI images of ablation procedures allowed determination of lesion location, shape, and relative size through time. The ARFI M-mode images were capable of distinguishing differences in behavior through the cardiac cycle between healthy and damaged tissue regions. As conventional sonography is often used to guide ablation catheters, ARFI imaging, which requires no additional equipment, may be a convenient modality for monitoring lesion formation in vivo.


Physics in Medicine and Biology | 2006

Liver ablation guidance with acoustic radiation force impulse imaging: challenges and opportunities.

Brian J. Fahey; Stephen J. Hsu; Patrick D. Wolf; Rendon C. Nelson; Gregg E. Trahey

Previous studies have established the feasibility of monitoring radiofrequency (RF) ablation procedures with acoustic radiation force impulse (ARFI) imaging. However, questions remained regarding the utility of the technique in clinically realistic scenarios and at scanning depths associated with abdominal imaging in adults. We address several of these issues and detail recent progress towards the clinical relevance of the ARFI technique. Results from in vitro bovine tissues and an in vivo ovine model are presented. Additional experiments were conducted with a tissue-mimicking phantom and parallel receive tracking techniques in order to further support the clinical feasibility of the method. Thermal lesions created during RF ablation are visualized with high contrast in both in vitro and in vivo hepatic tissues, and radial lesion growth can be monitored throughout the duration of the procedure. ARFI imaging is implemented on a diagnostic ultrasonic scanner, and thus may be a convenient option to guide RF ablation procedures, particularly when electrode insertion is also performed with sonographic guidance.


Ultrasound in Medicine and Biology | 2008

In Vivo Guidance and Assessment of Liver Radio-Frequency Ablation with Acoustic Radiation Force Elastography

Brian J. Fahey; Rendon C. Nelson; Stephen J. Hsu; David Bradway; Douglas M. Dumont; Gregg E. Trahey

The initial results from clinical trials investigating the utility of acoustic radiation force impulse (ARFI) imaging for use with radio-frequency ablation (RFA) procedures in the liver are presented. To date, data have been collected from 6 RFA procedures in 5 unique patients. Large displacement contrast was observed in ARFI images of both pre-ablation malignancies (mean 7.5 dB, range 5.7-11.9 dB) and post-ablation thermal lesions (mean 6.2 dB, range 5.1-7.5 dB). In general, ARFI images provided superior boundary definition of structures relative to the use of conventional sonography alone. Although further investigations are required, initial results are encouraging and demonstrate the clinical promise of the ARFI method for use in many stages of RFA procedures.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2007

Challenges and implementation of radiation-force imaging with an intracardiac ultrasound transducer

Stephen J. Hsu; Brian J. Fahey; Douglas M. Dumont; Patrick D. Wolf; Gregg E. Trahey

Intracardiac echocardiography (ICE) has been demonstrated to be an effective imaging modality for the guidance of several cardiac procedures, including radiofrequency ablation (RFA). However, assessing lesion size during the ablation with conventional ultrasound has been limited, as the associated changes within the B-mode images often are subtle. Acoustic radiation force impulse (ARFI) imaging is a promising modality to monitor RFAs as it is capable of visualizing variations in local stiffnesses within the myocardium. We demonstrate ARPI imaging with an intracardiac probe that creates higher quality images of the developing lesion. We evaluated the performance of an ICE probe with ARFI imaging in monitoring RFAs. The intracardiac probe was used to create high contrast, high resolution ARFI images of a tissue-mimicking phantom containing stiffer spherical inclusions. The probe also was used to examine an excised segment of an ovine right ventricle with a RFA-created surface lesion. Although the lesion was not visible in conventional B-mode images, the ARFI images were able to show the boundaries between the lesion and the surrounding tissue. ARFI imaging with an intracardiac probe then was used to monitor cardiac ablations in vivo. RFAs were performed within the right atrium of an ovine heart, and B-mode and ARFI imaging with the intracardiac probe was used to monitor the developing lesions. Although there was little indication of a developing lesion within the B-mode images, the corresponding ARFI images displayed regions around the ablation site that displaced less


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2009

Lower-limb vascular imaging with acoustic radiation force elastography: Demonstration of in vivo feasibility

Jason D. Allen; Douglas M. Dumont; Brian J. Fahey; Elizabeth Miller; Jeremy J. Dahl; Gregg E. Trahey

Acoustic radiation force impulse (ARFI) imaging characterizes the mechanical properties of tissue by measuring displacement resulting from applied ultrasonic radiation force. In this paper, we describe the current status of ARFI imaging for lower-limb vascular applications and present results from both tissue-mimicking phantoms and in vivo experiments. Initial experiments were performed on vascular phantoms constructed with polyvinyl alcohol for basic evaluation of the modality. Multilayer vessels and vessels with compliant occlusions of varying plaque load were evaluated with ARFI imaging techniques. Phantom layers and plaque are well resolved in the ARFI images, with higher contrast than B-mode, demonstrating the ability of ARFI imaging to identify regions of different mechanical properties. Healthy human subjects and those with diagnosed lower-limb peripheral arterial disease were imaged. Proximal and distal vascular walls are well visualized in ARFI images, with higher mean contrast than corresponding B-mode images. ARFI images reveal information not observed by conventional ultrasound and lend confidence to the feasibility of using ARFI imaging during lower-limb vascular workup.


Ultrasonic Imaging | 2006

Frame Rate Considerations for Real-Time Abdominal Acoustic Radiation Force Impulse Imaging

Brian J. Fahey; Mark L. Palmeri; Gregg E. Trahey

With the advent of real-time Acoustic Radiation Force Impulse (ARFI) imaging, elevated frame rates are both desirable and relevant from a clinical perspective. However, fundamental limitations on frame rates are imposed by thermal safety concerns related to incident radiation force pulses. Abdominal ARFI imaging utilizes a curvilinear scanning geometry that results in markedly different tissue heating patterns than those previously studied for linear arrays or mechanically-translated concave transducers. Finite Element Method (FEM) models were used to simulate these tissue heating patterns and to analyze the impact of tissue heating on frame rates available for abdominal ARFI imaging. A perfusion model was implemented to account for cooling effects due to blood flow and frame rate limitations were evaluated in the presence of normal, reduced and negligible tissue perfusions. Conventional ARFI acquisition techniques were also compared to ARFI imaging with parallel receive tracking in terms of thermal efficiency. Additionally, thermocouple measurements of transducer face temperature increases were acquired to assess the frame rate limitations imposed by cumulative heating of the imaging array. Frame rates sufficient for many abdominal imaging applications were found to be safely achievable utilizing available ARFI imaging techniques.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2008

A novel motion compensation algorithm for acoustic radiation force elastography

Brian J. Fahey; Stephen J. Hsu; Gregg E. Trahey

A novel method of physiological motion compensation for use with radiation force elasticity imaging has been developed. The method utilizes a priori information from finite element method models of the response of soft tissue to impulsive radiation force to isolate physiological motion artifacts from radiation force-induced displacement fields. The new algorithm is evaluated in a series of clinically realistic imaging scenarios, and its performance is compared to that achieved with previously described motion compensation algorithms. Though not without limitations, the new model-based motion compensation algorithm performs favorably in many circumstances and may be a logical choice for use with in vivo abdominal imaging.


ieee symposium on ultrasonics | 2003

ARFI imaging of thermal lesions in ex vivo and in vivo soft tissues

Brian J. Fahey; Kathryn R. Nightingale; Patrick D. Wolf; Gregg E. Trahey

The ability of ARFI imaging to monitor the ablation of soft tissues both ex vivo and in vivo was investigated. Thermal lesions were induced both in freshly excised bovine liver samples and in myocardial tissue of live sheep. While conventional sonography was unable to visualize induced lesions, ARFI imaging was capable of monitoring lesion size and boundaries. Good agreement was observed between lesion size in ARFI images and in results from pathology. The fact that ARFI imaging requires no additional equipment aside from that needed for conventional ultrasonic imaging makes it a promising modality for monitoring ablation procedures in vivo, especially in situations where sonography is already involved as a guiding mechanism, such as in many procedures requiring precise catheter placement.


Medical Imaging 2005: Ultrasonic Imaging and Signal Processing | 2005

Acoustic radiation force impulse imaging with an intra-cardiac probe

Stephen J. Hsu; Brian J. Fahey; Douglas M. Dumont; Gregg E. Trahey

Acoustic radiation force impulse (ARFI) imaging has been demonstrated to provide insight into the mechanical properties of tissue. The quality of ARFI images is dependent on the amount of acoustic energy from the radiation force pulse reaching the focus. Intra-cardiac probes provide an advantage for ARFI imaging of cardiac tissue, as the probe can be positioned close to the region of interest. The resulting ARFI images display local variations in tissue stiffnesses and show promise for monitoring and assessing the progress of cardiac ablations. The Siemens AcuNav intra-cardiac probe was used to image a tissue-mimicking phantom having 3 mm diameter spherical inclusions with an elastic modulus eight times greater than the surrounding tissue. The ARFI sequences formed high contrast, high resolution images of these inclusions up to depths of approximately 1.5 cm. The ARFI pulse sequences resulted in 0.8°C temperature increase on the transducer face, and the time constant associated with the return to equilibrium temperature was approximately 300 ms. The probe was used to examine an excised segment of an ovine right ventricle with a surface lesion created from radiofrequency ablations (RFA). In areas of healthy tissue, the ARFI images did not show any stiffer regions that would indicate the presence of a lesion. Although the lesion was not visible in conventional B-mode images, the ARFI images were able to show the boundaries between the lesion and the surrounding tissue.

Collaboration


Dive into the Brian J. Fahey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge