Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian M. Wiczer is active.

Publication


Featured researches published by Brian M. Wiczer.


Diabetes | 2010

Downregulation of Adipose Glutathione S-Transferase A4 Leads to Increased Protein Carbonylation, Oxidative Stress, and Mitochondrial Dysfunction

Jessica M. Curtis; Paul A. Grimsrud; Wendy Wright; Xin Xu; Rocio Foncea; David W. Graham; Jonathan R. Brestoff; Brian M. Wiczer; Olga Ilkayeva; Katherine Cianflone; Deborah E. Muoio; Edgar A. Arriaga; David A. Bernlohr

OBJECTIVE Peripheral insulin resistance is linked to an increase in reactive oxygen species (ROS), leading in part to the production of reactive lipid aldehydes that modify the side chains of protein amino acids in a reaction termed protein carbonylation. The primary enzymatic method for lipid aldehyde detoxification is via glutathione S-transferase A4 (GSTA4) dependent glutathionylation. The objective of this study was to evaluate the expression of GSTA4 and the role(s) of protein carbonylation in adipocyte function. RESEARCH DESIGN AND METHODS GSTA4-silenced 3T3-L1 adipocytes and GSTA4-null mice were evaluated for metabolic processes, mitochondrial function, and reactive oxygen species production. GSTA4 expression in human obesity was evaluated using microarray analysis. RESULTS GSTA4 expression is selectively downregulated in adipose tissue of obese insulin-resistant C57BL/6J mice and in human obesity-linked insulin resistance. Tumor necrosis factor-α treatment of 3T3-L1 adipocytes decreased GSTA4 expression, and silencing GSTA4 mRNA in cultured adipocytes resulted in increased protein carbonylation, increased mitochondrial ROS, dysfunctional state 3 respiration, and altered glucose transport and lipolysis. Mitochondrial function in adipocytes of lean or obese GSTA4-null mice was significantly compromised compared with wild-type controls and was accompanied by an increase in superoxide anion. CONCLUSIONS These results indicate that downregulation of GSTA4 in adipose tissue leads to increased protein carbonylation, ROS production, and mitochondrial dysfunction and may contribute to the development of insulin resistance and type 2 diabetes.


Hypertension | 2008

AMP Activated Protein Kinase-α2 Deficiency Exacerbates Pressure-Overload–Induced Left Ventricular Hypertrophy and Dysfunction in Mice

Ping Zhang; Xinli Hu; Xin Xu; John Fassett; Guangshuo Zhu; Benoit Viollet; Wayne Xu; Brian M. Wiczer; David A. Bernlohr; Robert J. Bache; Yingjie Chen

AMP activated protein kinase (AMPK) plays an important role in regulating myocardial metabolism and protein synthesis. Activation of AMPK attenuates hypertrophy in cultured cardiac myocytes, but the role of AMPK in regulating the development of myocardial hypertrophy in response to chronic pressure overload is not known. To test the hypothesis that AMPKα2 protects the heart against systolic overload–induced ventricular hypertrophy and dysfunction, we studied the response of AMPKα2 gene deficient (knockout [KO]) mice and wild-type mice subjected to 3 weeks of transverse aortic constriction (TAC). Although AMPKα2 KO had no effect on ventricular structure or function under control conditions, AMPKα2 KO significantly increased TAC-induced ventricular hypertrophy (ventricular mass increased 46% in wild-type mice compared with 65% in KO mice) while decreased left ventricular ejection fraction (ejection fraction decreased 14% in wild-type mice compared with a 43% decrease in KO mice). AMPKα2 KO also significantly exacerbated the TAC-induced increases of atrial natriuretic peptide, myocardial fibrosis, and cardiac myocyte size. AMPKα2 KO had no effect on total S6 ribosomal protein (S6), p70 S6 kinase, eukaryotic initiation factor 4E, and 4E binding protein-1 or their phosphorylation under basal conditions but significantly augmented the TAC-induced increases of p-p70 S6 kinaseThr389, p-S6Ser235, and p-eukaryotic initiation factor 4ESer209. AMPKα2 KO also enhanced the TAC-induced increase of p-4E binding protein-1Thr46 to a small degree and augmented the TAC-induced increase of p-AktSer473. These data indicate that AMPKα2 exerts a cardiac protective effect against pressure-overload–induced ventricular hypertrophy and dysfunction.


Journal of Lipid Research | 2007

Fatty acid metabolism in adipocytes : functional analysis of fatty acid transport proteins 1 and 4

Sandra Lobo; Brian M. Wiczer; Ann J. Smith; Angela M. Hall; David A. Bernlohr

The role of fatty acid transport protein 1 (FATP1) and FATP4 in facilitating adipocyte fatty acid metabolism was investigated using stable FATP1 or FATP4 knockdown (kd) 3T3-L1 cell lines derived from retrovirus-delivered short hairpin RNA (shRNA). Decreased expression of FATP1 or FATP4 did not affect preadipocyte differentiation or the expression of FATP1 (in FATP4 kd), FATP4 (in FATP1 kd), fatty acid translocase, acyl-coenzyme A synthetase 1, and adipocyte fatty acid binding protein but did lead to increased levels of peroxisome proliferator-activated receptor γ and CCAAT/enhancer binding protein α. Both FATP1 and FATP4 kd adipocytes exhibited reduced triacylglycerol deposition and corresponding reductions in diacylglycerol and monoacylglycerol levels compared with control cells. FATP1 kd adipocytes displayed an ∼25% reduction in basal 3H-labeled fatty acid uptake and a complete loss of insulin-stimulated 3H-labeled fatty acid uptake compared with control adipocytes. In contrast, FATP4 kd adipocytes as well as HEK-293 cells overexpressing FATP4 did not display any changes in fatty acid influx. FATP4 kd cells exhibited increased basal lipolysis, whereas FATP1 kd cells exhibited no change in lipolytic capacity. Consistent with reduced triacylglycerol accumulation, FATP1 and FATP4 kd adipocytes exhibited enhanced 2-deoxyglucose uptake compared with control adipocytes. These findings define unique and distinct roles for FATP1 and FATP4 in adipose fatty acid metabolism.


Journal of Biological Chemistry | 2009

Functional Analysis of Long-chain Acyl-CoA Synthetase 1 in 3T3-L1 Adipocytes

Sandra Lobo; Brian M. Wiczer; David A. Bernlohr

ACSL1 (acyl-CoA synthetase 1), the major acyl-CoA synthetase of adipocytes, has been proposed to function in adipocytes as mediating free fatty acid influx, esterification, and storage as triglyceride. To test this hypothesis, ACSL1 was stably silenced (knockdown (kd)) in 3T3-L1 cells, differentiated into adipocytes, and evaluated for changes in lipid metabolism. Surprisingly, ACSL1-silenced adipocytes exhibited no significant changes in basal or insulin-stimulated long-chain fatty acid uptake, lipid droplet size, or tri-, di-, or monoacylglycerol levels when compared with a control adipocyte line. However, ACSL1 kd adipocytes displayed a 7-fold increase in basal and a ∼15% increase in forskolin-stimulated fatty acid efflux without any change in glycerol release, indicating a role for the protein in fatty acid reesterification following lipolysis. Consistent with this proposition, ACSL1 kd cells exhibited a decrease in activation and phosphorylation of AMP-activated protein kinase and its primary substrate acetyl-CoA carboxylase. Moreover, ACSL1 kd adipocytes displayed an increase in phosphorylated protein kinase Cθ and phosphorylated JNK, attenuated insulin signaling, and a decrease in insulin-stimulated glucose uptake. These findings identify a primary role of ACSL1 in adipocytes not in control of lipid influx, as previously considered, but in lipid efflux and fatty acid-induced insulin resistance.


Journal of Lipid Research | 2009

A novel role for fatty acid transport protein 1 in the regulation of tricarboxylic acid cycle and mitochondrial function in 3T3-L1 adipocytes

Brian M. Wiczer; David A. Bernlohr

Fatty acid transport proteins (FATPs) are integral membrane acyl-CoA synthetases implicated in adipocyte fatty acid influx and esterification. Whereas some FATP1 translocates to the plasma membrane in response to insulin, the majority of FATP1 remains within intracellular structures and bioinformatic and immunofluorescence analysis of FATP1 suggests the protein primarily resides in the mitochondrion. To evaluate potential roles for FATP1 in mitochondrial metabolism, we used a proteomic approach following immunoprecipitation of endogenous FATP1 from 3T3-L1 adipocytes and identified mitochondrial 2-oxoglutarate dehydrogenase. To assess the functional consequence of the interaction, purified FATP1 was reconstituted into phospholipid-containing vesicles and its effect on 2-oxoglutarate dehydrogenase activity evaluated. FATP1 enhanced the activity of 2-oxoglutarate dehydrogenase independently of its acyl-CoA synthetase activity whereas silencing of FATP1 in 3T3-L1 adipocytes resulted in decreased activity of 2-oxoglutarate dehydrogenase. FATP1 silenced 3T3-L1 adipocytes exhibited decreased tricarboxylic acid cycle activity, increased cellular NAD+/NADH, increased fatty acid oxidation, and increased lactate production indicative of altered mitochondrial energy metabolism. These results reveal a novel role for FATP1 as a regulator of tricarboxylic acid cycle activity and mitochondrial function.


Biochemical and Biophysical Research Communications | 2009

FATP1 mediates fatty acid-induced activation of AMPK in 3T3-L1 adipocytes.

Brian M. Wiczer; Sandra Lobo; G. Luke Machen; Lee M. Graves; David A. Bernlohr

Fatty acid transport proteins are integral membrane acyl-CoA synthetases implicated in adipocyte fatty acid influx and esterification. FATP-dependent production of AMP was evaluated using FATP4 proteoliposomes, and fatty acid-dependent activation of AMP-activated protein kinase (AMPK) was assessed in 3T3-L1 adipocytes. Insulin-stimulated fatty acid influx (palmitate or arachidonate) into cultured adipocytes resulted in an increase in the phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase. Consistent with the activation of AMPK, palmitate uptake into 3T3-L1 adipocytes resulted in an increase in intracellular [AMP]/[ATP]. The fatty acid-induced increase in AMPK activation was attenuated in a cell line expressing shRNA targeting FATP1. Taken together, these results demonstrate that, in adipocytes, insulin-stimulated fatty acid influx mediated by FATP1 regulates AMPK and provides a potential regulatory mechanism for balancing de novo production of fatty acids from glucose metabolism with influx of preformed fatty acids via phosphorylation of acetyl-CoA carboxylase.


Biochemistry of Lipids, Lipoproteins and Membranes (Fifth Edition) | 2008

Lipid metabolism in adipose tissue

Ann V. Hertzel; Brian R. Thompson; Brian M. Wiczer; David A. Bernlohr

Publisher Summary This chapter focuses on the biochemistry of lipid metabolism in the adipocyte. Adipocytes make up approximately one-half of the cells in adipose tissue, the remainder being blood and endothelial cells, adipose precursor cells of varying degrees of differentiation, macrophages, and fibroblasts. In humans, small clusters of adipocytes are present that increase in size during gestation. Larger clusters of fat cells are associated with tissue vascularization and a general increase in cluster size is positively correlated with larger blood vessels. Paracrine/autocrine factors play a significant role in both capillary growth and adipose conversion. Recent advances have demonstrated that the adipocyte is not a passive lipid storage depot but a dynamic cell that plays a fundamental role in energy balance and overall body homeostasis. Moreover, the fat cell functions as a sensor of lipid levels, transmitting information to a neural circuit affecting major biological processes including hunger, sleep, and reproduction.


The Journal of Membrane Biology | 2006

A suppressor analysis of residues involved in cation transport in the lactose permease : Identification of a coupling sensor

Peter J. Franco; Elizabeth A. Matzke; Jerry L. Johnson; Brian M. Wiczer; Robert J. Brooker

Four amino acids critical for lactose permease function were altered using site-directed mutagenesis. The resulting Quad mutant (E269Q/R302L/H322Q/E325Q) was expressed at 60% of wild-type levels but found to have negligible transport activity. The Quad mutant was used as a parental strain to isolate suppressors that regained the ability to ferment the α-galactoside melibiose. Six different suppressors were identified involving five discrete amino acid changes and one amino acid deletion (Q60L, V229G, Y236D, S306L, K319N and ΔI298). All of the suppressors transported α-galactosides at substantial rates. In addition, the Q60L, ΔI298 and K319N suppressors regained a small but detectable amount of lactose transport. Assays of sugar-driven cation transport showed that both the Q60L and K319N suppressors couple the influx of melibiose with cations (H+ or H3O+). Taken together, the data show that the cation-binding domain in the lactose permease is not a fixed structure as proposed in previous models. Rather, the data are consistent with a model in which several ionizable residues form a dynamic coupling sensor that also may interact directly with the cation and lactose.


Future Lipidology | 2006

Transport of fatty acids into adipocytes

Brian M. Wiczer; Sandra Lobo; David A. Bernlohr

The influx of diet-derived free fatty acids into adipose tissue leads to a variety of metabolic and regulatory responses that affect both the development of obesity and the homeostatic mechanisms linked to adipocytokine synthesis and secretion, as well as insulin resistance and inflammatory disease. Despite the importance of such fatty acids in signal transduction, the biochemical mechanisms that facilitate long-chain fatty acid influx into fat cells remain enigmatic. On the basis of biochemical and/or molecular genetic approaches, a number of adipocyte plasma membrane proteins have been implicated in facilitating free fatty acid influx. This review focusses on a description of the proteins considered to be the major contributors to adipocyte fatty acid influx, their identification and evaluation on the basis of gain or loss-of-function studies, as well as their potential modes of action.


Journal of Biological Chemistry | 2005

Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of Acyl CoA synthetase activities in tissues from FATP4 null mice

Angela M. Hall; Brian M. Wiczer; Thomas Herrmann; W Stremmel; David A. Bernlohr

Collaboration


Dive into the Brian M. Wiczer's collaboration.

Top Co-Authors

Avatar

David A. Bernlohr

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Sandra Lobo

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Xu

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Ann J. Smith

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Charles O. Rock

Oak Ridge Associated Universities

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge