Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian P. Adley is active.

Publication


Featured researches published by Brian P. Adley.


Cancer Research | 2007

Engagement of Collagen-Binding Integrins Promotes Matrix Metalloproteinase-9–Dependent E-Cadherin Ectodomain Shedding in Ovarian Carcinoma Cells

Jaime Symowicz; Brian P. Adley; Kara J. Gleason; Jeffrey J. Johnson; Supurna Ghosh; David A. Fishman; Laurie G. Hudson; M. Sharon Stack

Reversible modulation of cell-cell adhesion, cell-matrix adhesion, and proteolytic activity plays a critical role in remodeling of the neoplastic ovarian epithelium during metastasis, implicating cadherins, integrins, and proteinases in i.p. metastatic dissemination of epithelial ovarian carcinoma (EOC). Aberrant epithelial differentiation is an early event in ovarian carcinogenesis; thus, in contrast to most carcinomas that lose E-cadherin expression with progression, E-cadherin is abundant in primary EOC. Metastasizing EOCs engage in integrin-mediated adhesion to submesothelial interstitial collagens and express matrix metalloproteinases (MMP) that facilitate collagen invasion, thereby anchoring secondary lesions in the submesothelial matrix. As metalloproteinases have also been implicated in E-cadherin ectodomain shedding, the current study was undertaken to model the effects of matrix-induced integrin clustering on proteinase-catalyzed E-cadherin ectodomain shedding. Aggregation of collagen-binding integrins induced shedding of an 80-kDa E-cadherin ectodomain [soluble E-cadherin (sE-cad)] in a MMP- and Src kinase-dependent manner, and sE-cad was prevalent in ascites from ovarian cancer patients. Expression of MMP-9 was elevated by integrin aggregation, integrin-mediated ectodomain shedding was inhibited by a MMP-9 function blocking antibody, and incubation of cells with exogenous MMP-9 catalyzed E-cadherin ectodomain shedding. In contrast to other tumors wherein sE-cad is released into the circulation, EOC tumors maintain direct contact with sE-cad-rich ascites at high concentration, and incubation of EOC cells with physiologically relevant concentrations of recombinant sE-cad disrupted adherens junctions. These data support a novel mechanism for posttranslational modification of E-cadherin function via MMP-9 induction initiated by cell-matrix contact and suggest a mechanism for promotion of EOC metastatic dissemination.


Cancer Research | 2008

Matrix metalloproteinase 9 is a mediator of epidermal growth factor-dependent e-cadherin loss in ovarian carcinoma cells.

Karen D. Cowden Dahl; Jaime Symowicz; Yan Ning; Elisa T. Gutierrez; David A. Fishman; Brian P. Adley; M. Sharon Stack; Laurie G. Hudson

Epidermal growth factor (EGF) receptor (EGFR) is frequently elevated in epithelial ovarian cancer, and E-cadherin expression is often reduced in advanced disease. In this study, we investigated a mechanism by which EGFR activation promotes disruption of adherens junctions through induction of matrix metalloproteinase 9 (MMP-9). We show that EGFR activation down-modulates E-cadherin, and broad spectrum MMP inhibition ameliorates EGF-stimulated junctional disruption and loss of E-cadherin protein. MMP-9 involvement in EGF-dependent down-regulation of E-cadherin was determined by siRNA specifically directed against MMP-9. Furthermore, treatment with recombinant MMP-9 or transient expression of MMP-9 is sufficient to reduce E-cadherin levels in differentiated ovarian tumor cells. Stable overexpression of MMP-9 led to a loss of E-cadherin and junctional integrity, and promoted a migratory and invasive phenotype. Thus, elevated MMP-9 protein expression is sufficient for junctional disruption and loss of E-cadherin in these cells. The associations between EGFR activation, MMP-9 expression, and E-cadherin were investigated in human ovarian tumors and paired peritoneal metastases wherein immunohistochemical staining for activated (phospho) EGFR and MMP-9 colocalized with regions of reduced E-cadherin. These data suggest that regulation of MMP-9 by EGFR may represent a novel mechanism for down-modulation of E-cadherin in ovarian cancer.


Cancer Research | 2005

Cyclooxygenase-2 Functions as a Downstream Mediator of Lysophosphatidic Acid to Promote Aggressive Behavior in Ovarian Carcinoma Cells

Jaime Symowicz; Brian P. Adley; Michelle Woo; Nelly Auersperg; Laurie G. Hudson; M. Sharon Stack

Elevated levels of the bioactive lipid lysophosphatidic acid (LPA) are detectable in the majority of patients with both early- and late-stage ovarian cancer, suggesting that LPA promotes early events in ovarian carcinoma dissemination. LPA contributes to the development, progression, and metastasis of ovarian cancer in part by inducing the expression of genes that contribute to proliferation, survival, or invasion, including cyclooxgenase-2 (COX-2) and matrix metalloproteinase-2 (MMP-2). We have previously shown that LPA promotes proMMP-2 activation and MMP-2-dependent migration and invasion in ovarian cancer cells. The purpose of the current study was to determine whether the effect of LPA on acquisition of the metastatic phenotype in ovarian cancer cells is mediated via a COX-2-dependent mechanism. Immunohistochemical analysis of 173 ovarian tumors showed strong COX-2 immunoreactivity in 63% of tumor specimens, including 50% of borderline tumors. LPA increased COX-2 protein expression in a time- and concentration-dependent manner in two of three immortalized borderline ovarian epithelial cells as well as in four of six ovarian cancer cell lines. This was accomplished by both activation of the Edg/LPA receptor and LPA-mediated transactivation of the epidermal growth factor receptor, which increased COX-2 expression via the Ras/mitogen-activated protein kinase pathway. COX-2 also played a role in LPA-induced invasion and migration, as treatment with the COX-2 specific inhibitor NS-398 reduced LPA-induced proMMP-2 protein expression and activation and blocked MMP-dependent motility and invasive activity. These data show that COX-2 functions as a downstream mediator of LPA to potentiate aggressive cellular behavior.


Modern Pathology | 2006

Benign metastasizing leiomyoma: clonality, telomere length and clinicopathologic analysis.

Kurt T. Patton; Liang Cheng; Veronica Papavero; Matthew G. Blum; Anjana V. Yeldandi; Brian P. Adley; Chunyan Luan; Leslie K. Diaz; Pei Hui; Ximing J. Yang

Benign metastasizing leiomyoma is a rare condition affecting women with a history of uterine leiomyomata and is characterized by multiple histologically benign pulmonary smooth muscle tumors. Speculations on its pathogenesis include a benign uterine leiomyoma colonizing the lung, a metastatic low-grade uterine leiomyosarcoma, and primary pulmonary leiomyomatosis. To elucidate its pathogenesis, we analyzed the clinical, pathological and immunohistochemical features, clonality, and telomere length of multiple lung and uterine tumors in three patients with benign metastasizing leiomyoma. In all cases, pulmonary tumors had benign histology and immunohistochemical profiles (estrogen receptor positive, progesterone receptor positive, and very low proliferative index) identical to uterine leiomyoma. In eight tumors from three patients, clonality was assessed by analyzing the variable length of the polymorphic CAG repeat sequence within the human androgen receptor gene. In the two informative patients pulmonary and uterine tumors showed identical patterns of androgen receptor allelic inactivation, indicating that they were clonal. The telomere length measured by fluorescence in situ hybridization in pulmonary leiomyomas of all three patients were either long or very long and were identical to the uterine counterparts, indicating significant telomere shortening is not a crucial step for developing metastases. Our evidence supports the notion that benign metastasizing leiomyoma is clonally derived from benign-appearing uterine leiomyomas.


Archives of Pathology & Laboratory Medicine | 2008

Glypican-3 as a Useful Diagnostic Marker That Distinguishes Hepatocellular Carcinoma From Benign Hepatocellular Mass Lesions

Hanlin L. Wang; Florencia Anatelli; Qihui“Jim” Zhai; Brian P. Adley; Shang-Tian Chuang; Ximing J. Yang

CONTEXT Histopathologic distinction between hepatocellular carcinoma (HCC) and benign hepatocellular mass lesions, particularly hepatocellular adenoma, can sometimes be challenging. The currently available ancillary tools are suboptimal in terms of sensitivity and specificity. OBJECTIVE To further characterize the diagnostic value of glypican-3 (GPC3), a cell surface proteoglycan that has recently been shown to be overexpressed in HCC, in the distinction between HCC and benign hepatocellular mass lesions. DESIGN A total of 221 surgically resected liver specimens were subjected to immunohistochemical staining using a monoclonal antibody specific for GPC3. These included 111 HCCs, 48 hepatocellular adenomas, 30 focal nodular hyperplasias, and 32 large regenerative nodules in the background of cirrhosis. RESULTS Cytoplasmic, membranous, and canalicular staining for GPC3 was detected in 84 (75.7%) of the 111 HCCs, among which, 61 (72.6%) of the 84 cases exhibited diffuse immunoreactivity. In contrast, none of the 110 cases of hepatocellular adenoma, focal nodular hyperplasia, and large regenerative nodule showed detectable GPC3 staining. Focal GPC3 immunoreactivity was detected in cirrhotic nodules in 11 (16.4%) of 67 HCC cases with a cirrhotic background, but no background staining was observed in the remaining 44 HCCs without cirrhosis. GPC3 expression in HCCs did not correlate with the size, differentiation, or stage of the tumors; the presence or absence of cirrhotic background; or the underlying etiologies. CONCLUSIONS GPC3 is a specific immunomarker for HCC that can be used to distinguish HCC from benign hepatocellular mass lesions, particularly hepatocellular adenoma. However, the diagnosis of HCC should not rely entirely on positive GPC3 immunostaining because focal immunoreactivity can be detected in a small subset of cirrhotic nodules. In addition, GPC3 expression in HCC can also be focal, and thus, the lack of GPC3 staining does not exclude the diagnosis of HCC.


Journal of Biological Chemistry | 2007

Microenvironmental regulation of membrane type 1 matrix metalloproteinase activity in ovarian carcinoma cells via collagen-induced EGR1 expression.

Maria V. Barbolina; Brian P. Adley; Edgardo V. Ariztia; Yueying Liu; M. Sharon Stack

Late stage ovarian cancer is characterized by disseminated intraperitoneal metastasis as secondary lesions anchor in the type I and III collagen-rich submesothelial matrix. Ovarian carcinoma cells preferentially adhere to interstitial collagen, and collagen-induced integrin clustering up-regulates the expression of the transmembrane collagenase membrane type 1 matrix metalloproteinase (MT1-MMP). Collagenolytic activity is important in intraperitoneal metastasis, potentiating invasion through the mesothelial cell layer and colonization of the submesothelial collagen-rich matrix. The objective of this study was to elucidate a potential mechanistic link between collagen adhesion and MT1-MMP expression. Our results indicate that culturing cells on three-dimensional collagen gels, but not thin layer collagen or synthetic threedimensional hydrogels, results in rapid induction of the transcription factor EGR1. Integrin signaling through a SRC kinase-dependent pathway is necessary for EGR1 induction. Silencing of EGR1 expression using small interfering RNA abrogated collagen-induced MT1-MMP expression and inhibited cellular invasion of three-dimensional collagen gels. These data support a model for intraperitoneal metastasis wherein collagen adhesion and clustering of collagen binding integrins activates integrin-mediated signaling via SRC kinases to induce expression of EGR1, resulting in transcriptional activation of the MT1-MMP promoter and subsequent MT1-MMP-catalyzed collagen invasion. This model highlights the role of unique interactions between ovarian carcinoma cells and interstitial collagens in the ovarian tumor microenvironment in inducing gene expression changes that potentiate intraperitoneal metastatic progression.


Laboratory Investigation | 2008

Motility Related Actinin Alpha-4 Is Associated with Advanced and Metastatic Ovarian Carcinoma

Maria V. Barbolina; Brian P. Adley; David L. Kelly; Angela J. Fought; Denise M. Scholtens; Lonnie D. Shea; M. Sharon Stack

Advanced and metastatic ovarian cancer is a leading cause of death from gynecologic malignancies. A more detailed understanding of the factors controlling invasion and metastasis may lead to novel anti-metastatic therapies. To model cellular interactions that occur during intraperitoneal metastasis, comparative cDNA microarray analysis and confirmatory real-time reverse transcription PCR (RT-PCR) were employed to uncover changes in gene expression that may occur in late stage ovarian cancer in response to microenvironmental cues, particularly native three-dimensional collagen I. Gene expression in human ovarian carcinoma tissues was evaluated on the RNA and protein level using real-time RT-PCR and immunohistochemistry. Cell invasion and migration were evaluated in a collagen invasion assay and a scratch wound assay. Three-dimensional collagen I culture led to differential expression of several genes. The role of actinin alpha-4 (ACTN4), a cytoskeleton-associated protein implicated in the regulation of cell motility, was examined in detail. ACTN4 RNA and protein expression were associated with advanced and metastatic human ovarian carcinoma. This report demonstrates that a cytoskeletal-associated protein ACTN4 is upregulated by three-dimensional collagen culture conditions, leading to increased invasion and motility of ovarian cancer cells. Expression of ACTN4 in human ovarian tumors was found to be associated with advanced-stage disease and peritoneal metastases.


American Journal of Clinical Pathology | 2006

Expression of kidney-specific cadherin in chromophobe renal cell carcinoma and renal oncocytoma

Brian P. Adley; Anita Gupta; Fan Lin; Chunyan Luan; Bin Tean Teh; Ximing J. Yang

Kidney-specific cadherin (Ksp-cad) recently was proposed to differentiate chromophobe renal cell carcinoma (RCC) from oncocytoma based on a finding of Ksp-cad expression in 97% of chromophobe RCCs but only 3% of oncocytomas. However, another study showed no difference in Ksp-cad immunoreactivity between these 2 tumors. We attempted to evaluate Ksp-cad expression in renal tumors using expression microarrays and immunohistochemical analysis. Ksp-cad messenger RNA (mRNA) levels were examined in 158 renal tumors, including 15 chromophobe RCCs and 15 oncocytomas. Immunohistochemical analysis was performed on tissue microarrays containing 125 renal tumors, including 36 chromophobe RCCs and 41 oncocytomas. Ksp-cad mRNA compared with normal kidney tissue was 89% in chromophobe RCC and 64% in oncocytoma. Furthermore, 31 of 36 chromophobe RCCs and 31 of 41 oncocytomas showed Ksp-cad immunoreactivity. Ksp-cad was present in chromophobe RCCs and oncocytomas at mRNA and protein levels, providing strong evidence that Ksp-cad immunohistochemical analysis cannot be used in differentiating these tumors.


The American Journal of Surgical Pathology | 2004

Expression of RON proto-oncogene in renal oncocytoma and chromophobe renal cell carcinoma

Kurt T. Patton; Maria Tretiakova; Jorge L. Yao; Veronica Papavero; Lei Huo; Brian P. Adley; Guan Wu; Jiaoti Huang; Michael Pins; Bin Tean Teh; Ximing J. Yang

Recently, it was reported that RON proto-oncogene, encoding a receptor tyrosine kinase, was strongly expressed in renal oncocytomas but not in any renal cell carcinomas, including 5 chromophobe renal cell carcinomas, which morphologically resemble oncocytomas. To determine its diagnostic value, we studied Ron protein expression by immunohistochemistry in a larger number of renal cell neoplasms with emphasis on chromophobe renal cell carcinomas. Tissue microarrays containing 141 renal cell neoplasms, including 55 oncocytomas and 52 chromophobe renal cell carcinomas, were constructed. In addition, conventional sections from 15 cases of oncocytoma and 5 cases of chromophobe renal cell carcinoma were analyzed. Immunohistochemistry was carried out with a monoclonal mouse anti-human Ron-α antibody. Staining intensity was scored on a 0 to 3 scale. Ninety-nine percent of oncocytomas (69 of 70) and 96% of chromophobe renal cell carcinomas (55 of 57) showed moderate to strong, diffuse cytoplasmic Ron immunoreactivity with intensities ≥2, while only 17% of other renal cell carcinoma subtypes stained with intensities ≥2. Our study indicates that Ron immunostaining cannot be used to distinguish oncocytoma from chromophobe renal cell carcinoma.


Gynecologic Oncology | 2009

Expression of membrane type 1 matrix metalloproteinase (MMP-14) in epithelial ovarian cancer: High level expression in clear cell carcinoma

Brian P. Adley; Kara J. Gleason; Ximing J. Yang; M. Sharon Stack

OBJECTIVE Clear cell carcinomas of the ovary constitute approximately 5% of all ovarian neoplasms and have a distinct gene expression profile relative to other ovarian carcinoma histotypes. Tumors often present as an early stage large pelvic mass with a high degree of recurrence and frequent early metastasis. Matrix metalloproteinases (MMPs) play a role in intraperitoneal metastasis through breakdown of cell-cell and cell-matrix barriers, enabling anchoring of secondary lesions and promoting proliferation in a geometrically constrained matrix environment. The objective of this study was to evaluate MMP expression in ovarian clear cell carcinoma. METHODS Immunohistochemistry was used to evaluate expression of membrane type 1 MMP (MMP-14), MMP-2 and MMP-9 in a panel of ovarian tumors. Western blotting and gelatin zymography were used to examine MMP-14 expression and activity in the clear cell carcinoma cell line ES2. The ability of ES2 cells to invade and proliferate within three-dimensional collagen gels was evaluated. RESULTS High level expression of MMP-14 and MMP-2 were observed in ovarian clear cell carcinoma relative to other histotypes (94-95% strong positive). MMP-14 was expressed and active in cultured ES2 cells. ES2 cells also exhibited MMP-dependent invasion of and proliferation within three-dimensional collagen gels. CONCLUSIONS The high level expression of MMP-14 together with in vitro functional analyses suggest that MMP-14 may contribute to both the proliferative capacity and the enhanced parenchymal metastasis of ovarian clear cell carcinoma.

Collaboration


Dive into the Brian P. Adley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria V. Barbolina

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Tean Teh

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge