Brian P. McEvoy
QIMR Berghofer Medical Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brian P. McEvoy.
American Journal of Human Genetics | 2009
Sarah E. Medland; Dale R. Nyholt; Jodie N. Painter; Brian P. McEvoy; Allan F. McRae; Gu Zhu; Scott D. Gordon; Manuel A. Ferreira; Margaret J. Wright; Anjali K. Henders; Megan J. Campbell; David L. Duffy; Narelle K. Hansell; Stuart Macgregor; Wendy S. Slutske; Andrew C. Heath; Grant W. Montgomery; Nicholas G. Martin
Hair morphology is highly differentiated between populations and among people of European ancestry. Whereas hair morphology in East Asian populations has been studied extensively, relatively little is known about the genetics of this trait in Europeans. We performed a genome-wide association scan for hair morphology (straight, wavy, curly) in three Australian samples of European descent. All three samples showed evidence of association implicating the Trichohyalin gene (TCHH), which is expressed in the developing inner root sheath of the hair follicle, and explaining approximately 6% of variance (p=1.5x10(-31)). These variants are at their highest frequency in Northern Europeans, paralleling the distribution of the straight-hair EDAR variant in Asian populations.
Nature Genetics | 2009
Beben Benyamin; Manuel A. Ferreira; Gonneke Willemsen; Scott D. Gordon; Rita P. S. Middelberg; Brian P. McEvoy; Jouke-Jan Hottenga; Anjali K. Henders; Megan J. Campbell; Leanne Wallace; Andrew C. Heath; Eco J. C. de Geus; Dale R. Nyholt; Peter M. Visscher; Brenda W.J.H. Penninx; Dorret I. Boomsma; Nicholas G. Martin; Grant W. Montgomery; John Whitfield
We report a genome-wide association study to iron status. We identify an association of SNPs in TPMRSS6 to serum iron (rs855791, combined P = 1.5 × 10−20), transferrin saturation (combined P = 2.2 × 10−23) and erythrocyte mean cell volume (MCV, combined P = 1.1 × 10−10). We also find suggestive evidence of association with blood hemoglobin levels (combined P = 5.3 × 10−7). These findings demonstrate the involvement of TMPRSS6 in control of iron homeostasis and in normal erythropoiesis.
Biological Psychiatry | 2011
Andrew C. Heath; John Whitfield; Nicholas G. Martin; Michele L. Pergadia; Alison Goate; Penelope A. Lind; Brian P. McEvoy; Andrew J. Schrage; Julia D. Grant; Yi-Ling Chou; Rachel Zhu; Anjali K. Henders; Sarah E. Medland; Scott D. Gordon; Elliot C. Nelson; Arpana Agrawal; Dale R. Nyholt; Kathleen K. Bucholz; Pamela A. F. Madden; Grant W. Montgomery
BACKGROUND Given moderately strong genetic contributions to variation in alcoholism and heaviness of drinking (50% to 60% heritability) with high correlation of genetic influences, we have conducted a quantitative trait genome-wide association study (GWAS) for phenotypes related to alcohol use and dependence. METHODS Diagnostic interview and blood/buccal samples were obtained from sibships ascertained through the Australian Twin Registry. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed with 8754 individuals (2062 alcohol-dependent cases) selected for informativeness for alcohol use disorder and associated quantitative traits. Family-based association tests were performed for alcohol dependence, dependence factor score, and heaviness of drinking factor score, with confirmatory case-population control comparisons using an unassessed population control series of 3393 Australians with genome-wide SNP data. RESULTS No findings reached genome-wide significance (p = 8.4 × 10(-8) for this study), with lowest p value for primary phenotypes of 1.2 × 10(-7). Convergent findings for quantitative consumption and diagnostic and quantitative dependence measures suggest possible roles for a transmembrane protein gene (TMEM108) and for ANKS1A. The major finding, however, was small effect sizes estimated for individual SNPs, suggesting that hundreds of genetic variants make modest contributions (1/4% of variance or less) to alcohol dependence risk. CONCLUSIONS We conclude that 1) meta-analyses of consumption data may contribute usefully to gene discovery; 2) translation of human alcoholism GWAS results to drug discovery or clinically useful prediction of risk will be challenging; and 3) through accumulation across studies, GWAS data may become valuable for improved genetic risk differentiation in research in biological psychiatry (e.g., prospective high-risk or resilience studies).
Human Molecular Genetics | 2010
Stuart Macgregor; Alex W. Hewitt; Pirro G. Hysi; Jonathan B Ruddle; Sarah E. Medland; Anjali K. Henders; Scott D. Gordon; Toby Andrew; Brian P. McEvoy; Paul G. Sanfilippo; Francis Carbonaro; Vikas Tah; Yi-Ju Li; Sonya L. Bennett; Jamie E. Craig; Grant W. Montgomery; Khanh Nhat Tran-Viet; Nadean L. Brown; Tim D. Spector; Nicholas G. Martin; Terri L. Young; Christopher J. Hammond; David A. Mackey
Optic nerve assessment is important for many blinding diseases, with cup-to-disc ratio (CDR) assessments commonly used in both diagnosis and progression monitoring of glaucoma patients. Optic disc, cup, rim area and CDR measurements all show substantial variation between human populations and high heritability estimates within populations. To identify loci underlying these quantitative traits, we performed a genome-wide association study in two Australian twin cohorts and identified rs3858145, P = 6.2 × 10−10, near the ATOH7 gene as associated with the mean disc area. ATOH7 is known from studies in model organisms to play a key role in retinal ganglion cell formation. The association with rs3858145 was replicated in a cohort of UK twins, with a meta-analysis of the combined data yielding P = 3.4 × 10−10. Imputation further increased the evidence for association for several SNPs in and around ATOH7 (P = 1.3 × 10−10 to 4.3 × 10−11, top SNP rs1900004). The meta-analysis also provided suggestive evidence for association for the cup area at rs690037, P = 1.5 × 10−7, in the gene RFTN1. Direct sequencing of ATOH7 in 12 patients with optic nerve hypoplasia, one of the leading causes of blindness in children, revealed two novel non-synonymous mutations (Arg65Gly, Ala47Thr) which were not found in 90 unrelated controls (combined Fishers exact P = 0.0136). Furthermore, the Arg65Gly variant was found to have very low frequency (0.00066) in an additional set of 672 controls.
Economics and Human Biology | 2009
Brian P. McEvoy; Peter M. Visscher
Height is correlated with risk to certain diseases and various socio-economic outcomes. As an easy to observe and measure trait, it has been a classic paradigm in the emergence of fundamental concepts regarding inheritance and genetics. Resemblances in height between relatives suggest that 80% of height variation is under genetic control with the rest controlled by environmental factors such as diet and disease exposure. Nearly a century ago it was recognised that many genes were likely to be involved but it is only with recent advances in technology that it has become possible to comprehensively search the human genome for DNA variants that control height. About 50 genes and regions of the genome have been associated with height to date. These begin to explain the biological basis of height, its links to disease and aid our understanding of the evolution of human height. The genes discovered so far have a very small individual effect and hundreds, maybe thousands, more of even smaller effects are still lost in the genome. Despite a successful start to height gene mapping, there remain considerable theoretical, technological, and statistical hurdles to be overcome in order to unravel its full genetic basis.
Genome Research | 2009
Brian P. McEvoy; Grant W. Montgomery; Allan F. McRae; Samuli Ripatti; Markus Perola; Tim D. Spector; Lynn Cherkas; Kourosh R. Ahmadi; Dorret I. Boomsma; Gonneke Willemsen; Jouke J. Hottenga; Nancy L. Pedersen; Patrik K. E. Magnusson; Ko Kyvik; Kaare Christensen; Jaakko Kaprio; Kauko Heikkilä; Aarno Palotie; Elisabeth Widen; Juha Muilu; Ann-Christine Syvänen; Ulrika Liljedahl; Orla Hardiman; Simon Cronin; Leena Peltonen; Nicholas G. Martin; Peter M. Visscher
Population structure can provide novel insight into the human past, and recognizing and correcting for such stratification is a practical concern in gene mapping by many association methodologies. We investigate these patterns, primarily through principal component (PC) analysis of whole genome SNP polymorphism, in 2099 individuals from populations of Northern European origin (Ireland, United Kingdom, Netherlands, Denmark, Sweden, Finland, Australia, and HapMap European-American). The major trends (PC1 and PC2) demonstrate an ability to detect geographic substructure, even over a small area like the British Isles, and this information can then be applied to finely dissect the ancestry of the European-Australian and European-American samples. They simultaneously point to the importance of considering population stratification in what might be considered a small homogeneous region. There is evidence from F(ST)-based analysis of genic and nongenic SNPs that differential positive selection has operated across these populations despite their short divergence time and relatively similar geographic and environmental range. The pressure appears to have been focused on genes involved in immunity, perhaps reflecting response to infectious disease epidemic. Such an event may explain a striking selective sweep centered on the rs2508049-G allele, close to the HLA-G gene on chromosome 6. Evidence of the sweep extends over a 8-Mb/3.5-cM region. Overall, the results illustrate the power of dense genotype and sample data to explore regional population variation, the events that have crafted it, and their implications in both explaining disease prevalence and mapping these genes by association.
Molecular Biology and Evolution | 2013
Sandra Beleza; António M. Santos; Brian P. McEvoy; Isabel L. Alves; Cláudia Martinho; Emily Cameron; Mark D. Shriver; Esteban J. Parra; Jorge Rocha
The inverse correlation between skin pigmentation and latitude observed in human populations is thought to have been shaped by selective pressures favoring lighter skin to facilitate vitamin D synthesis in regions far from the equator. Several candidate genes for skin pigmentation have been shown to exhibit patterns of polymorphism that overlap the geospatial variation in skin color. However, little work has focused on estimating the time frame over which skin pigmentation has changed and on the intensity of selection acting on different pigmentation genes. To provide a temporal framework for the evolution of lighter pigmentation, we used forward Monte Carlo simulations coupled with a rejection sampling algorithm to estimate the time of onset of selective sweeps and selection coefficients at four genes associated with this trait in Europeans: KITLG, TYRP1, SLC24A5, and SLC45A2. Using compound haplotype systems consisting of rapidly evolving microsatellites linked to one single-nucleotide polymorphism in each gene, we estimate that the onset of the sweep shared by Europeans and East Asians at KITLG occurred approximately 30,000 years ago, after the out-of-Africa migration, whereas the selective sweeps for the European-specific alleles at TYRP1, SLC24A5, and SLC45A2 started much later, within the last 11,000-19,000 years, well after the first migrations of modern humans into Europe. We suggest that these patterns were influenced by recent increases in size of human populations, which favored the accumulation of advantageous variants at different loci.
American Journal of Human Genetics | 2010
Manuel A. Ferreira; Massimo Mangino; Chanson J. Brumme; Zhen Zhen Zhao; Sarah E. Medland; Margaret J. Wright; Dale R. Nyholt; Scott D. Gordon; Megan J. Campbell; Brian P. McEvoy; Anjali K. Henders; David Evans; Jerry S. Lanchbury; Florencia Pereyra; Bruce D. Walker; David W. Haas; Nicole Soranzo; Tim D. Spector; Paul I. W. de Bakker; Grant W. Montgomery; Nicholas G. Martin
Abnormal expansion or depletion of particular lymphocyte subsets is associated with clinical manifestations such as HIV progression to AIDS and autoimmune disease. We sought to identify genetic predictors of lymphocyte levels and reasoned that these may play a role in immune-related diseases. We tested 2.3 million variants for association with five lymphocyte subsets, measured in 2538 individuals from the general population, including CD4+ T cells, CD8+ T cells, CD56+ natural killer (NK) cells, and the derived measure CD4:CD8 ratio. We identified two regions of strong association. The first was located in the major histocompatibility complex (MHC), with multiple SNPs strongly associated with CD4:CD8 ratio (rs2524054, p = 2.1 x 10(-28)). The second region was centered within a cluster of genes from the Schlafen family and was associated with NK cell levels (rs1838149, p = 6.1 x 10(-14)). The MHC association with CD4:CD8 replicated convincingly (p = 1.4 x 10(-9)) in an independent panel of 988 individuals. Conditional analyses indicate that there are two major independent quantitative trait loci (QTL) in the MHC region that regulate CD4:CD8 ratio: one is located in the class I cluster and influences CD8 levels, whereas the second is located in the class II cluster and regulates CD4 levels. Jointly, both QTL explained 8% of the variance in CD4:CD8 ratio. The class I variants are also strongly associated with durable host control of HIV, and class II variants are associated with type-1 diabetes, suggesting that genetic variation at the MHC may predispose one to immune-related diseases partly through disregulation of T cell homeostasis.
PLOS Genetics | 2012
Ruth McQuillan; Niina Eklund; Nicola Pirastu; Maris Kuningas; Brian P. McEvoy; Tonu Esko; Tanguy Corre; Gail Davies; Marika Kaakinen; Leo-Pekka Lyytikäinen; Kati Kristiansson; Aki S. Havulinna; Martin Gögele; Veronique Vitart; Albert Tenesa; Yurii S. Aulchenko; Caroline Hayward; Åsa Johansson; Mladen Boban; Sheila Ulivi; Antonietta Robino; Vesna Boraska; Wilmar Igl; Sarah H. Wild; Lina Zgaga; Najaf Amin; Evropi Theodoratou; Ozren Polasek; Giorgia Girotto; Lorna M. Lopez
Stature is a classical and highly heritable complex trait, with 80%–90% of variation explained by genetic factors. In recent years, genome-wide association studies (GWAS) have successfully identified many common additive variants influencing human height; however, little attention has been given to the potential role of recessive genetic effects. Here, we investigated genome-wide recessive effects by an analysis of inbreeding depression on adult height in over 35,000 people from 21 different population samples. We found a highly significant inverse association between height and genome-wide homozygosity, equivalent to a height reduction of up to 3 cm in the offspring of first cousins compared with the offspring of unrelated individuals, an effect which remained after controlling for the effects of socio-economic status, an important confounder (χ2 = 83.89, df = 1; p = 5.2×10−20). There was, however, a high degree of heterogeneity among populations: whereas the direction of the effect was consistent across most population samples, the effect size differed significantly among populations. It is likely that this reflects true biological heterogeneity: whether or not an effect can be observed will depend on both the variance in homozygosity in the population and the chance inheritance of individual recessive genotypes. These results predict that multiple, rare, recessive variants influence human height. Although this exploratory work focuses on height alone, the methodology developed is generally applicable to heritable quantitative traits (QT), paving the way for an investigation into inbreeding effects, and therefore genetic architecture, on a range of QT of biomedical importance.
American Journal of Human Genetics | 2010
Brian P. McEvoy; Joanne M. Lind; Eric T. Wang; Robert K. Moyzis; Peter M. Visscher; Sheila van Holst Pellekaan; Alan N. Wilton
Australia was probably settled soon after modern humans left Africa, but details of this ancient migration are not well understood. Debate centers on whether the Pleistocene Sahul continent (composed of New Guinea, Australia, and Tasmania) was first settled by a single wave followed by regional divergence into Aboriginal Australian and New Guinean populations (common origin) or whether different parts of the continent were initially populated independently. Australia has been the subject of relatively few DNA studies even though understanding regional variation in genomic structure and diversity will be important if disease-association mapping methods are to be successfully evaluated and applied across populations. We report on a genome-wide investigation of Australian Aboriginal SNP diversity in a sample of participants from the Riverine region. The phylogenetic relationship of these Aboriginal Australians to a range of other global populations demonstrates a deep common origin with Papuan New Guineans and Melanesians, with little evidence of substantial later migration until the very recent arrival of European colonists. The study provides valuable and robust insights into an early and important phase of human colonization of the globe. A broader survey of Australia, including diverse geographic sample populations, will be required to fully appreciate the continents unique population history and consequent genetic heritage, as well as the importance of both to the understanding of health issues.