Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert H. Ring is active.

Publication


Featured researches published by Robert H. Ring.


The Journal of Neuroscience | 2010

Loss of Retrograde Endocannabinoid Signaling and Reduced Adult Neurogenesis in Diacylglycerol Lipase Knock-out Mice

Ying Gao; Dmitry V. Vasilyev; Maria B. Goncalves; Fiona V. Howell; Carl Hobbs; Melina Reisenberg; Ru Shen; Mei-Yi Zhang; Brian W. Strassle; Peimin Lu; Lilly Mark; Michael J. Piesla; Kangwen Deng; Evguenia V. Kouranova; Robert H. Ring; Garth T. Whiteside; Brian Bates; Frank S. Walsh; Gareth Williams; Menelas N. Pangalos; Tarek A. Samad; Patrick Doherty

Endocannabinoids (eCBs) function as retrograde signaling molecules at synapses throughout the brain, regulate axonal growth and guidance during development, and drive adult neurogenesis. There remains a lack of genetic evidence as to the identity of the enzyme(s) responsible for the synthesis of eCBs in the brain. Diacylglycerol lipase-α (DAGLα) and -β (DAGLβ) synthesize 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain. However, their respective contribution to this and to eCB signaling has not been tested. In the present study, we show ∼80% reductions in 2-AG levels in the brain and spinal cord in DAGLα−/− mice and a 50% reduction in the brain in DAGLβ−/− mice. In contrast, DAGLβ plays a more important role than DAGLα in regulating 2-AG levels in the liver, with a 90% reduction seen in DAGLβ−/− mice. Levels of arachidonic acid decrease in parallel with 2-AG, suggesting that DAGL activity controls the steady-state levels of both lipids. In the hippocampus, the postsynaptic release of an eCB results in the transient suppression of GABA-mediated transmission at inhibitory synapses; we now show that this form of synaptic plasticity is completely lost in DAGLα−/− animals and relatively unaffected in DAGLβ−/− animals. Finally, we show that the control of adult neurogenesis in the hippocampus and subventricular zone is compromised in the DAGLα−/− and/or DAGLβ−/− mice. These findings provide the first evidence that DAGLα is the major biosynthetic enzyme for 2-AG in the nervous system and reveal an essential role for this enzyme in regulating retrograde synaptic plasticity and adult neurogenesis.


American Journal of Human Genetics | 2013

Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing

Yong-hui Jiang; Ryan K. C. Yuen; Xin Jin; Mingbang Wang; Nong Chen; Xueli Wu; Jia Ju; Junpu Mei; Yujian Shi; Mingze He; Guangbiao Wang; Jieqin Liang; Zhe Wang; Dandan Cao; Melissa T. Carter; Christina Chrysler; Irene Drmic; Jennifer L. Howe; Lynette Lau; Christian R. Marshall; Daniele Merico; Thomas Nalpathamkalam; Bhooma Thiruvahindrapuram; Ann Thompson; Mohammed Uddin; Susan Walker; Jun Luo; Evdokia Anagnostou; Lonnie Zwaigenbaum; Robert H. Ring

Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms.


Nature Medicine | 2015

Whole-genome sequencing of quartet families with autism spectrum disorder

Ryan K. C. Yuen; Bhooma Thiruvahindrapuram; Daniele Merico; Susan Walker; Kristiina Tammimies; Ny Hoang; Christina Chrysler; Thomas Nalpathamkalam; Giovanna Pellecchia; Yi Liu; Matthew J. Gazzellone; Lia D'Abate; Eric Deneault; Jennifer L. Howe; Richard S C Liu; Ann Thompson; Mehdi Zarrei; Mohammed Uddin; Christian R. Marshall; Robert H. Ring; Lonnie Zwaigenbaum; Peter N. Ray; Rosanna Weksberg; Melissa T. Carter; Bridget A. Fernandez; Wendy Roberts; Peter Szatmari; Stephen W. Scherer

Autism spectrum disorder (ASD) is genetically heterogeneous, with evidence for hundreds of susceptibility loci. Previous microarray and exome-sequencing studies have examined portions of the genome in simplex families (parents and one ASD-affected child) having presumed sporadic forms of the disorder. We used whole-genome sequencing (WGS) of 85 quartet families (parents and two ASD-affected siblings), consisting of 170 individuals with ASD, to generate a comprehensive data resource encompassing all classes of genetic variation (including noncoding variants) and accompanying phenotypes, in apparently familial forms of ASD. By examining de novo and rare inherited single-nucleotide and structural variations in genes previously reported to be associated with ASD or other neurodevelopmental disorders, we found that some (69.4%) of the affected siblings carried different ASD-relevant mutations. These siblings with discordant mutations tended to demonstrate more clinical variability than those who shared a risk variant. Our study emphasizes that substantial genetic heterogeneity exists in ASD, necessitating the use of WGS to delineate all genic and non-genic susceptibility variants in research and in clinical diagnostics.


Neurorx | 2005

Innovative Approaches for the Development of Antidepressant Drugs: Current and Future Strategies

Lee E. Schechter; Robert H. Ring; Chad E. Beyer; Zoë A. Hughes; Xavier Khawaja; Jessica E. Malberg; Sharon Rosenzweig-Lipson

SummaryDepression is a highly debilitating disorder that has been estimated to affect up to 21% of the world population. Despite the advances in the treatment of depression with selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs), there continue to be many unmet clinical needs with respect to both efficacy and side effects. These needs range from efficacy in treatment resistant patients, to improved onset, to reductions in side effects such as emesis or sexual dysfunction. To address these needs, there are numerous combination therapies and novel targets that have been identified that may demonstrate improvements in one or more areas. There is tremendous diversity in the types of targets and approaches being taken. At one end of a spectrum is combination therapies that maintain the benefits associated with SSRIs but attempt to either improve efficacy or reduce side effects by adding additional mechanisms (5-HT1A, 5-HT1B, 5-HT1D, 5-HT2C, α-2A). At the other end of the spectrum are more novel targets, such as neurotrophins (BDNF, IGF), based on recent findings that antidepressants induce neurogenesis. In between, there are many approaches that range from directly targeting serotonin receptors (5-HT2C, 5-HT6) to targeting the multiplicity of potential mechanisms associated with excitatory (glutamate, NMDA, mGluR2, mGluR5) or inhibitory amino acid systems (GABA) or peptidergic systems (neurokinin 1, corticotropin-releasing factor 1, melanin-concentrating hormone 1, V1b). The present review addresses the most exciting approaches and reviews the localization, neurochemical and behavioral data that provide the supporting rationale for each of these targets or target combinations.


Molecular and Cellular Neuroscience | 2007

The LXR agonist TO901317 selectively lowers hippocampal Aβ42 and improves memory in the Tg2576 mouse model of Alzheimer's disease

David Riddell; Hua Zhou; Thomas A. Comery; Evguenia Kouranova; C. Frederick Lo; Helen K. Warwick; Robert H. Ring; Suzan Aschmies; Jane Xu; Katie Kubek; Warren D. Hirst; Catherine Gonzales; Yi Chen; Erin Murphy; Sarah K. Leonard; Dmytro Vasylyev; Aram Oganesian; Robert Martone; Menelas N. Pangalos; Peter Reinhart; J. Steve Jacobsen

Recent studies show that intracellular cholesterol levels can modulate the processing of amyloid precursor protein to Abeta peptide. Moreover, cholesterol-rich apoE-containing lipoproteins may also promote Abeta clearance. Agonists of the liver X receptor (LXR) transcriptionally induce genes involved in intracellular lipid efflux and transport, including apoE. Thus, LXR agonists have the potential to both inhibit APP processing and promote Abeta clearance. Here we show that LXR agonist, TO901317, increased hippocampal ABCA1 and apoE and decreased Abeta42 levels in APP transgenic mice. TO901317 had no significant effects on levels of Abeta40, full length APP, or the APP processing products. Next, we examined the effects of TO901317 in the contextual fear conditioning paradigm; TO901317 completely reversed the contextual memory deficit in these mice. These data demonstrate that LXR agonists do not directly inhibit APP processing but rather facilitate the clearance of Abeta42 and may represent a novel therapeutic approach to Alzheimers disease.


Science Translational Medicine | 2012

Negative Allosteric Modulation of the mGluR5 Receptor Reduces Repetitive Behaviors and Rescues Social Deficits in Mouse Models of Autism

Jill L. Silverman; Daniel G. Smith; Stacey J. Sukoff Rizzo; Michael N. Karras; Sarah M. Turner; Seda S. Tolu; Dianne K. Bryce; Deborah L. Smith; Kari R. Fonseca; Robert H. Ring; Jacqueline N. Crawley

Autism-like behaviors in mice were reversed by a negative modulator of a metabotropic glutamate receptor, suggesting a treatment for symptoms of autism spectrum disorders. Treatment of Autism Symptoms in Mice When they are 2 to 5 years old, children with autism start to show unusual social interactions and impaired communication. They may fail to develop relationships with their peers and be unable to interpret nuances of speech and body language. Most show repetitive motor behaviors and restricted interests and can have associated seizures, anxiety, or intellectual impairment. A large number of genes can put people at risk for this disorder, each in a small number of cases, and these genes point to connections between neurons as a vulnerable point in autism. Now, Silverman and colleagues have used two inbred strains of mice that display well-replicated behavioral abnormalities relevant to the diagnostic symptoms of autism and shown that some of these symptoms can be improved with a drug directed at a central glutamate receptor of the brain, mGluR5. The authors used two inbred strains of mice that display robust behaviors relevant to the diagnostic symptoms of autism. BTBR mice show deficits in many types of social interactions and high levels of repetitive self-grooming. C58 repetitively jumps. They used GRN-529, a compound developed by Pfizer that reduces the actions of glutamate, the main excitatory neurotransmitter in the brain. Other mGluR antagonists are showing promise in clinical trials for people with the fragile X mutation, who have both intellectual impairments and autism, so the authors reasoned that an mGluR5 compound might help autistic symptoms. GRN-529 reduced both the repetitive self-grooming in BTBR and the repetitive jumping in C58. Most intriguingly, GRN-529 also improved social behaviors in BTBR in two assays, one for social approach to an unfamiliar mouse and one for social interactions between freely moving pairs of mice. A particular strength of this study is that the authors replicated these beneficial actions of the mGluR5 compound in several separate groups of mice, in two laboratories. Although the path from target identification to effective human treatment is a long and winding road, the discovery of therapeutic efficacy for an mGluR5 negative allosteric modulator in both the repetitive and the social domains in two distinct mouse models is a promising beginning. This single biological target may offer a useful entry point to develop a pharmacological therapy that alleviates many symptoms of autism spectrum disorders. Neurodevelopmental disorders such as autism and fragile X syndrome were long thought to be medically untreatable, on the assumption that brain dysfunctions were immutably hardwired before diagnosis. Recent revelations that many cases of autism are caused by mutations in genes that control the ongoing formation and maturation of synapses have challenged this dogma. Antagonists of metabotropic glutamate receptor subtype 5 (mGluR5), which modulate excitatory neurotransmission, are in clinical trials for fragile X syndrome, a major genetic cause of intellectual disabilities. About 30% of patients with fragile X syndrome meet the diagnostic criteria for autism. Reasoning by analogy, we considered the mGluR5 receptor as a potential target for intervention in autism. We used BTBR T+tf/J (BTBR) mice, an established model with robust behavioral phenotypes relevant to the three diagnostic behavioral symptoms of autism—unusual social interactions, impaired communication, and repetitive behaviors—to probe the efficacy of a selective negative allosteric modulator of the mGluR5 receptor, GRN-529. GRN-529 reduced repetitive behaviors in three cohorts of BTBR mice at doses that did not induce sedation in control assays of open field locomotion. In addition, the same nonsedating doses reduced the spontaneous stereotyped jumping that characterizes a second inbred strain of mice, C58/J. Further, GRN-529 partially reversed the striking lack of sociability in BTBR mice on some parameters of social approach and reciprocal social interactions. These findings raise the possibility that a single targeted pharmacological intervention may alleviate multiple diagnostic behavioral symptoms of autism.


Molecular Pharmacology | 2010

Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system

Pranab K. Chanda; Ying Gao; Lilly Mark; Joan Btesh; Brian W. Strassle; Peimin Lu; Michael J. Piesla; Mei-Yi Zhang; Brendan Bingham; Albert J. Uveges; Dianne Kowal; David S. Garbe; Evguenia V. Kouranova; Robert H. Ring; Brian Bates; Menelas N. Pangalos; Jeffrey D. Kennedy; Garth T. Whiteside; Tarek A. Samad

Endocannabinoids are lipid molecules that serve as natural ligands for the cannabinoid receptors CB1 and CB2. They modulate a diverse set of physiological processes such as pain, cognition, appetite, and emotional states, and their levels and functions are tightly regulated by enzymatic biosynthesis and degradation. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid in the brain and is believed to be hydrolyzed primarily by the serine hydrolase monoacylglycerol lipase (MAGL). Although 2-AG binds and activates cannabinoid receptors in vitro, when administered in vivo, it induces only transient cannabimimetic effects as a result of its rapid catabolism. Here we show using a mouse model with a targeted disruption of the MAGL gene that MAGL is the major modulator of 2-AG hydrolysis in vivo. Mice lacking MAGL exhibit dramatically reduced 2-AG hydrolase activity and highly elevated 2-AG levels in the nervous system. A lack of MAGL activity and subsequent long-term elevation of 2-AG levels lead to desensitization of brain CB1 receptors with a significant reduction of cannabimimetic effects of CB1 agonists. Also consistent with CB1 desensitization, MAGL-deficient mice do not show alterations in neuropathic and inflammatory pain sensitivity. These findings provide the first genetic in vivo evidence that MAGL is the major regulator of 2-AG levels and signaling and reveal a pivotal role for 2-AG in modulating CB1 receptor sensitization and endocannabinoid tone.


Nature Neuroscience | 2017

Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder

Ryan K. C. Yuen; Daniele Merico; Matt Bookman; Jennifer L. Howe; Bhooma Thiruvahindrapuram; Rohan V. Patel; Joe Whitney; Nicole Deflaux; Jonathan Bingham; Z. B. Wang; Giovanna Pellecchia; Janet A. Buchanan; Susan Walker; Christian R. Marshall; Mohammed Uddin; Mehdi Zarrei; Eric Deneault; Lia D'Abate; Ada J S Chan; Stephanie Koyanagi; Tara Paton; Sergio L. Pereira; Ny Hoang; Worrawat Engchuan; Edward J. Higginbotham; Karen Ho; Sylvia Lamoureux; Weili Li; Jeffrey R. MacDonald; Thomas Nalpathamkalam

We are performing whole-genome sequencing of families with autism spectrum disorder (ASD) to build a resource (MSSNG) for subcategorizing the phenotypes and underlying genetic factors involved. Here we report sequencing of 5,205 samples from families with ASD, accompanied by clinical information, creating a database accessible on a cloud platform and through a controlled-access internet portal. We found an average of 73.8 de novo single nucleotide variants and 12.6 de novo insertions and deletions or copy number variations per ASD subject. We identified 18 new candidate ASD-risk genes and found that participants bearing mutations in susceptibility genes had significantly lower adaptive ability (P = 6 × 10−4). In 294 of 2,620 (11.2%) of ASD cases, a molecular basis could be determined and 7.2% of these carried copy number variations and/or chromosomal abnormalities, emphasizing the importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD.


Neuropharmacology | 2010

Receptor and behavioral pharmacology of WAY-267464, a non-peptide oxytocin receptor agonist.

Robert H. Ring; Lee E. Schechter; Sarah K. Leonard; Jason M. Dwyer; Brian Platt; Radka Graf; Steven M. Grauer; Claudine Pulicicchio; Lynn Resnick; Zia Rahman; Stacey J. Sukoff Rizzo; Bin Luo; Chad E. Beyer; Sheree F. Logue; Karen L. Marquis; Zoë A. Hughes; Sharon Rosenzweig-Lipson

The widely reported effects of oxytocin (OT) on CNS function has generated considerable interest in the therapeutic potential for targeting this system for a variety of human psychiatric diseases, including anxiety disorders, autism, schizophrenia, and depression. The utility of synthetic OT, as both a research tool and neurotherapeutic, is limited by the physiochemical properties inherent in most neuropeptides, notably its short half-life and poor blood brain barrier penetration. Subsequently, the discovery and development of non-peptide molecules that act as selective agonists of the oxytocin receptor (OTR) has been an important goal of the field. In this study, we report the receptor and behavioral pharmacology of WAY-267464, a first generation small-molecule OTR agonist. WAY-267464 is a high-affinity, potent, and selective (vs. V1a, V2, V1b) agonist of the OTR. In assays measuring both behavioral (four-plate test, elevated zero maze) and autonomic (stress-induced hyperthermia) parameters of the anxiety response, WAY-267464 exhibits an anxiolytic-like profile similar to OT. We have demonstrated that the anxiolytic-like profile of WAY-267464 is mediated through central sites of action. WAY-267464 also significantly reverses disruption in prepulse inhibition of the acoustic startle reflex induced by either MK-801 or amphetamine, similar to the antipsychotic-like effects previously reported for OT. Interestingly, in the mouse tail suspension test, WAY-267464 failed to produce changes in immobility that are seen with OT, raising the question of whether the antidepressant-like activity of OT may be working independently of the OTR. A selective OTR antagonist also failed to block the effects of OT on immobility in the TST. The significance of these findings for shaping the clinical development of OTR agonists is discussed.


Neuropsychopharmacology | 2007

Increasing the Levels of Insulin-Like Growth Factor-I by an IGF Binding Protein Inhibitor Produces Anxiolytic and Antidepressant-Like Effects

Jessica Malberg; Brian Platt; Stacey J. Sukoff Rizzo; Robert H. Ring; Irwin Lucki; Lee E. Schechter; Sharon Rosenzweig-Lipson

The present studies were conducted to determine if increasing central levels of the neurotrophic factor insulin-like growth factor-1 (IGF-I) either directly or indirectly produces anxiolytic and antidepressant-like effects in the mouse. Central levels of IGF-I can be increased directly, by administering IGF-I, or indirectly by blocking the insulin-like growth factor binding proteins (IGFBPs). The IGFBP family has the unique ability to regulate IGF-I levels by sequestering IGF-I into an inactive complex. Therefore, an IGFBP inhibitor increases the level of IGF-I available to bind to its receptor. Intracerebroventricular (icv) administration of the nonspecific IGFBP inhibitor NBI-31772 (10–30 μg) increases the number of punished crossings in the four-plate test and NBI-31772 (0.3–10 μg) increases time spent in the open quadrant of the elevated zero maze (EZM), indicative of anxiolytic-like effects. NBI-31772 (3–30 μg) also decreases immobility time in the tail suspension test, indicative of antidepressant-like effects. Similarly, icv administration of IGF-I (0.1 μg) produces anxiolytic-like effects in the four-plate test and IGF-1 (0.3–1 μg) produces anxiolytic-like effects in the EZM. IGF-I (10 μg) also produces antidepressant-like effects in the tail suspension test. Coadministration of the IGF-I receptor antagonist JB1 with NBI-31772 or IGF-I blocks the anxiolytic-like and antidepressant-like effects of these compounds. These results suggest that NBI-31772 produces behavioral effects by increasing levels of IGF-I that in turn activate the IGF-I receptor. The present studies demonstrate that an IGFBP inhibitor mimics the behavioral effects of IGF-I and that IGFBP inhibition may represent a novel mechanism by which to increase IGF-I to treat depression and anxiety.

Collaboration


Dive into the Robert H. Ring's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge