Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Briggs Atherton is active.

Publication


Featured researches published by Briggs Atherton.


Physics of Plasmas | 2011

Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid metal liners a)

Daniel Brian Sinars; Stephen A. Slutz; Mark Herrmann; R. D. McBride; M. E. Cuneo; Christopher A. Jennings; J. P. Chittenden; A.L. Velikovich; Kyle Peterson; Roger Alan Vesey; C. Nakhleh; E.M. Waisman; B.E. Blue; K. Killebrew; D. G. Schroen; Kurt Tomlinson; Aaron Edens; M. R. Lopez; I. C. Smith; Jonathon Shores; V. Bigman; Guy R. Bennett; Briggs Atherton; M. E. Savage; W. A. Stygar; G. T. Leifeste; John L. Porter

A recent publication [D. B. Sinars et al., Phys. Rev. Lett. 105, 185001 (2010)] describes the first controlled experiments measuring the growth of the magneto-Rayleigh–Taylor instability in fast (∼100 ns) Z-pinch plasmas formed from initially solid aluminum tubes (liners). Sinusoidal perturbations on the surface of these liners with wavelengths of 25–400 μm were used to seed single-mode instabilities. The evolution of the outer liner surface was captured using multiframe 6.151 keV radiography. The initial paper shows that there is good agreement between the data and 2-D radiation magneto-hydrodynamic simulations down to 50 μm wavelengths. This paper extends the previous one by providing more detailed radiography images, detailed target characterization data, a more accurate comparison to analytic models for the amplitude growth, the first data from a beryllium liner, and comparisons between the data and 3D simulations.


IEEE Transactions on Plasma Science | 2012

Magnetically Driven Implosions for Inertial Confinement Fusion at Sandia National Laboratories

Michael Edward Cuneo; Mark Herrmann; Daniel Brian Sinars; Stephen A. Slutz; W. A. Stygar; Roger Alan Vesey; A. B. Sefkow; Gregory A. Rochau; Gordon Andrew Chandler; J. E. Bailey; John L. Porter; R. D. McBride; D. C. Rovang; M.G. Mazarakis; E. P. Yu; Derek C. Lamppa; Kyle Peterson; C. Nakhleh; Stephanie B. Hansen; A. J. Lopez; M. E. Savage; Christopher A. Jennings; M. R. Martin; R.W. Lemke; Briggs Atherton; I. C. Smith; P. K. Rambo; M. Jones; M.R. Lopez; P. J. Christenson

High current pulsed-power generators efficiently store and deliver magnetic energy to z-pinch targets. We review applications of magnetically driven implosions (MDIs) to inertial confinement fusion. Previous research on MDIs of wire-array z-pinches for radiation-driven indirect-drive target designs is summarized. Indirect-drive designs are compared with new targets that are imploded by direct application of magnetic pressure produced by the pulsed-power current pulse. We describe target design elements such as larger absorbed energy, magnetized and pre-heated fuel, and cryogenic fuel layers that may relax fusion requirements. These elements are embodied in the magnetized liner inertial fusion (MagLIF) concept [Slutz “Pulsed-power-driven cylindrical liner implosions of laser pre-heated fuel magnetized with an axial field,” Phys. Plasmas, 17, 056303 (2010), and Stephen A. Slutz and Roger A. Vesey, “High-Gain Magnetized Inertial Fusion,” Phys. Rev. Lett., 108, 025003 (2012)]. MagLIF is in the class of magneto-inertial fusion targets. In MagLIF, the large drive currents produce an azimuthal magnetic field that compresses cylindrical liners containing pre-heated and axially pre-magnetized fusion fuel. Scientific breakeven may be achievable on the Z facility with this concept. Simulations of MagLIF with deuterium-tritium fuel indicate that the fusion energy yield can exceed the energy invested in heating the fuel at a peak drive current of about 27 MA. Scientific breakeven does not require alpha particle self-heating and is therefore not equivalent to ignition. Capabilities to perform these experiments will be developed on Z starting in 2013. These simulations and predictions must be validated against a series of experiments over the next five years. Near-term experiments are planned at drive currents of 16 MA with D2 fuel. MagLIF increases the efficiency of coupling energy (=target absorbed energy/driver stored energy) to targets by 10-150X relative to indirect-drive targets. MagLIF also increases the absolute energy absorbed by the target by 10-50X relative to indirect-drive targets. These increases could lead to higher fusion gains and yields. Single-shot high yields are of great utility to national security missions. Higher efficiency and higher gains may also translate into more compelling (lower cost and complexity) fusion reactor designs. We will discuss the broad goals of the emerging research on the MagLIF concept and identify some of the challenges. We will also summarize advances in pulsed-power technology and pulsed-power driver architectures that double the efficiency of the driver.


Applied Optics | 2011

Comparisons between laser damage and optical electric field behaviors for hafnia/silica antireflection coatings

John Curtis Bellum; Damon E. Kletecka; Patrick K. Rambo; I. C. Smith; Jens Schwarz; Briggs Atherton

We compare designs and laser-induced damage thresholds (LIDTs) of hafnia/silica antireflection (AR) coatings for 1054 nm or dual 527 nm/1054 nm wavelengths and 0° to 45° angles of incidence (AOIs). For a 527 nm/1054 nm, 0° AOI AR coating, LIDTs from three runs arbitrarily selected over three years are ∼20 J/cm2 or higher at 1054 nm and <10 J/cm2 at 527 nm. Calculated optical electric field intensities within the coating show two intensity peaks for 527 nm but not for 1054 nm, correlating with the lower (higher) LIDTs at 527 nm (1054 nm). For 1054 nm AR coatings at 45° and 32° AOIs and S and P polarizations (Spol and Ppol), LIDTs are high for Spol (>35 J/cm2) but not as high for Ppol (>30 J/cm2 at 32° AOI; ∼15 J/cm2 at 45° AOI). Field intensities show that Ppol discontinuities at media interfaces correlate with the lower Ppol LIDTs at these AOIs. For Side 1 and Side 2 dual 527 nm/1054 nm AR coatings of a diagnostic beam splitter at 22.5° AOI, Spol and Ppol LIDTs (>10 J/cm2 at 527 nm; >35 J/cm2 at 1054 nm) are consistent with Spol and Ppol intensity behaviors.


Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers | 2009

Meeting thin film design and production challenges for laser damage resistant optical coatings at the Sandia Large Optics Coating Operation

John Curtis Bellum; Damon E. Kletecka; Patrick K. Rambo; I. C. Smith; Mark Kimmel; Jens Schwarz; Matthias Geissel; Guild Copeland; Briggs Atherton; Douglas E. Smith; Claire Smith; Constantine Y. Khripin

Sandias Large Optics Coating Operation provides laser damage resistant optical coatings on meter-class optics required for the ZBacklighter Terawatt and Petawatt lasers. Deposition is by electron beam evaporation in a 2.3 m × 2.3 m × 1.8 m temperature controlled vacuum chamber. Ion assisted deposition (IAD) is optional. Coating types range from antireflection (AR) to high reflection (HR) at S and P polarizations for angle of incidence (AOI) from 0° to 47°. This paper reports progress in meeting challenges in design and deposition of these high laser induced damage threshold (LIDT) coatings. Numerous LIDT tests (NIF-MEL protocol, 3.5 ns laser pulses at 1064 nm and 532 nm) on the coatings confirm that they are robust against laser damage. Typical LIDTs are: at 1064 nm, 45° AOI, Ppol, 79 J/cm2 (IAD 32 layer HR coating) and 73 J/cm2 (non-IAD 32 layer HR coating); at 1064 nm, 32° AOI, 82 J/cm2 (Ppol) and 55 J/cm2 (Spol ) (non-IAD 32 layer HR coating); and at 532 nm, Ppol, 16 J/cm2 (25° AOI) and 19 J/cm2 (45° AOI) (IAD 50 layer HR coating). The demands of meeting challenging spectral, AOI and LIDT performances are highlighted by an HR coating required to provide R > 99.6% reflectivity in Ppol and Spol over AOIs from 24° to 47° within ~ 1% bandwidth at both 527 nm and 1054 nm. Another issue is coating surface roughness. For IAD of HR coatings, elevating the chamber temperature to ~ 120 °C and turning the ion beam off during the pause in deposition between layers reduce the coating surface roughness compared to runs at lower temperatures with the ion beam on continuously. Atomic force microscopy and optical profilometry confirm the reduced surface roughness for these IAD coatings, and tests show that their LIDTs remain high.


Journal of Physics: Conference Series | 2008

Activation of the Z-petawatt laser at Sandia National Laboratories

Jens Schwarz; Patrick K. Rambo; Matthias Geissel; Aaron Edens; I. C. Smith; E. Brambrink; Mark Kimmel; Briggs Atherton

To enhance radiographic capabilities on its Z-Accelerator, Sandia National Laboratories is incorporating a petawatt laser system into the existing Z-Backlighter laser facility. A chirped-pulse laser has been constructed to seed the large Beamlet type Nd:Phosphate glass slab amplifiers. This seed laser consists of an optical parametric chirped pulse amplification (OPCPA) system joined to a Nd:Phosphate glass rod amplifier in order to achieve multi-Joule operation. After injection into the main slab amplifiers up to 500 J of chirped pulse energy is achieved. Two compressor options are available for this output: a lower energy compressor for 100TW (50 J/500 fs) operation and a higher energy compressor for 1PW (500 J/500 fs) operation. While the higher energy compressor is under construction, the 100 TW system is now operational and can achieve focal intensities up to 1019 W/cm2.


Optics Express | 2012

Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor.

Jens Schwarz; Patrick K. Rambo; Mark Kimmel; Briggs Atherton

A wavefront sensor has been used to measure the Kerr nonlinear focal shift of a high intensity ultrashort pulse beam in a focusing beam geometry while accounting for the effects of plasma-defocusing. It is shown that plasma-defocusing plays a major role in the nonlinear focusing dynamics and that measurements of Kerr nonlinearity and ionization are coupled. Furthermore, this coupled effect leads to a novel way that measures the laser ionization rates in air under atmospheric conditions as well as Kerr nonlinearity. The measured nonlinear index n₂ compares well with values found in the literature and the measured ionization rates could be successfully benchmarked to the model developed by Perelomov, Popov, and Terentev (PPT model) [Sov. Phys. JETP 50, 1393 (1966)].


Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers | 2009

Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories

Mark Kimmel; Patrick K. Rambo; Robin Scott Broyles; Matthias Geissel; Jens Schwarz; John Curtis Bellum; Briggs Atherton

To enable laser-based radiography of high energy density physics events on the Z-Accelerator[4,5] at Sandia National Laboratories, a facility known as the Z-Backlighter has been developed. Two Nd:Phosphate glass lasers are used to create x-rays and/or proton beams capable of this radiographic diagnosis: Z-Beamlet (a multi-kilojoule laser operating at 527nm in a few nanoseconds) and Z-Petawatt (a several hundred joule laser operating at 1054nm in the subpicosecond regime) [1,2]. At the energy densities used in these systems, it is necessary to use high damage threshold optical materials, some of which are poorly characterized (especially for the sub-picosecond pulse). For example, Sandia has developed a meter-class dielectric coating capability for system optics. Damage testing can be performed by external facilities for nanosecond 532nm pulses, measuring high reflector coating damage thresholds >80J/cm2 and antireflection coating damage thresholds >20J/cm2 [3]. However, available external testing capabilities do not use femtosecond/picosecond scale laser pulses. To this end, we have constructed a sub-picoseond-laser-based optical damage test system. The damage tester system also allows for testing in a vacuum vessel, which is relevant since many optics in the Z-Backlighter system are used in vacuum. This paper will present the results of laser induced damage testing performed in both atmosphere and in vacuum, with 1054nm sub-picosecond laser pulses. Optical materials/coatings discussed are: bare fused silica and protected gold used for benchmarking; BK7; Zerodur; protected silver; and dielectric optical coatings (halfnia/silica layer pairs) produced by Sandias in-house meter-class coating capability.


IEEE Transactions on Plasma Science | 2011

Observation of Instability Growth in a Copper

Daniel Brian Sinars; Kyle Peterson; Stephen A. Slutz; Mark Herrmann; E. P. Yu; Michael Edward Cuneo; I. C. Smith; Guy R. Bennett; Briggs Atherton; John L. Porter; David Franklin Wenger

Existing monochromatic X-ray backlighting diagnostics at 1.865 and 6.151 keV have been combined to create a two-color monochromatic X-ray backlighting diagnostic. The use of different photon energies can allow a much broader range of areal densities to be observed in a single experiment. Here, we apply the two-color backlighter to the study of instability growth on the outside edge of an initially solid copper rod target driven by a 100-ns rise-time current pulse with a peak value of 20 MA. The different opacity of Cu at these two photon energies allows a dynamic range of ~ 1600x to be surveyed instead of ~ 60x (assuming a useful transmission range of 5%-95%).


Laser Damage Symposium XLII: Annual Symposium on Optical Materials for High Power Lasers | 2010

Z

John Curtis Bellum; Damon E. Kletecka; Mark Kimmel; Patrick K. Rambo; I. C. Smith; Jens Schwarz; Briggs Atherton; Zachary Hobbs; Douglas E. Smith

Sandias Large Optics Coating Operation has extensive results of laser induced damage threshold (LIDT) testing of its anti-reflection (AR) and high reflection coatings on substrates pitch polished using ceria and washed in a process that includes an alumina wash step. The purpose of the alumina wash step is to remove residual polishing compound to minimize its role in laser damage. These LIDT tests are for multi longitudinal mode, ns class pulses at 1064 nm and 532 nm (NIF-MEL protocol) and mode locked, sub-ps class pulses at 1054 nm (Sandia measurements), and show reasonably high and adequate laser damage resistance for coatings in the beam trains of Sandias Z-Backlighter terawatt and petawatt lasers. An AR coating in addition to coatings of our previous reports confirms this with LIDTs of 33.0 J/cm2 for 3.5 ns pulses and 1.8 J/cm2 for 350 fs pulses. In this paper, we investigate both ceria and zirconia in doublesided polishing (common for large flat Z-Backlighter laser optics) as they affect LIDTs of an AR coating on fused silica substrates washed with or without the alumina wash step. For these AR coated, double-sided polished surfaces, ceria polishing in general affords better resistance to laser damage than zirconia polishing and laser damage is less likely with the alumina wash step than without it. This is supported by specific results of laser damage tests with 3.5 ns, multi longitudinal mode, single shot pulses at 1064 nm and 532 nm, with 7.0 ns, single and multi longitudinal mode, single and multi shot pulses at 532 nm, and with 350 fs, mode-locked, single shot pulses at 1054 nm.


Review of Scientific Instruments | 2011

-Pinch Target Using Two-Color Monochromatic X-Ray Backlighting

Matthias Geissel; M. Schollmeier; Mark Kimmel; Patrick K. Rambo; Jens Schwarz; Briggs Atherton; E. Brambrink

Experiments dedicated to the characterization of plasma mirrors with a high energy, single shot short-pulse laser were performed at the 100 TW target area of the Z-Backlighter Facility at Sandia National Laboratories. A suite of beam diagnostics was used to characterize a high energy laser pulse with a large aperture through focus imaging setup. By varying the fluence on the plasma mirror around the plasma ignition threshold, critical performance parameters were determined and a more detailed understanding of the way in which a plasma mirror works could be deduced. It was found, that very subtle variations in the laser near field profile will have strong effects on the reflected pulse if the maximum fluence on the plasma mirror approaches the plasma ignition threshold.

Collaboration


Dive into the Briggs Atherton's collaboration.

Top Co-Authors

Avatar

Patrick K. Rambo

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Jens Schwarz

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Matthias Geissel

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Mark Kimmel

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

I. C. Smith

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

M. Schollmeier

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Guy R. Bennett

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

John L. Porter

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Aaron Edens

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Adam B Sefkow

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge