Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick K. Rambo is active.

Publication


Featured researches published by Patrick K. Rambo.


Physics of Plasmas | 2005

Pulsed-power-driven high energy density physics and inertial confinement fusion research

M. Keith Matzen; M. A. Sweeney; R. G. Adams; J. R. Asay; J. E. Bailey; Guy R. Bennett; D.E. Bliss; Douglas D. Bloomquist; T. A. Brunner; Robert B. Campbell; Gordon Andrew Chandler; C.A. Coverdale; M. E. Cuneo; Jean-Paul Davis; C. Deeney; Michael P. Desjarlais; G. L. Donovan; Christopher Joseph Garasi; Thomas A. Haill; C. A. Hall; D.L. Hanson; M. J. Hurst; B. Jones; M. D. Knudson; R. J. Leeper; R.W. Lemke; M.G. Mazarakis; D. H. McDaniel; T.A. Mehlhorn; T. J. Nash

The Z accelerator [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] at Sandia National Laboratories delivers ∼20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar). In a z-pinch configuration, the magnetic pressure (the Lorentz force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ∕cm3 and temperatures >1keV at 0.1% of solid density. These plasmas produce x-ray energies approaching 2MJ at powers >200TW for inertial confinement fusion (ICF) and high energy density physics (HEDP) experiments. In an alternative configuration, the large magnetic pressure directly drives isentropic compression experiments to pressures >3Mbar and accelerates flyer plates to >30km∕s for equation of state ...


Review of Scientific Instruments | 2004

Monochromatic x-ray imaging experiments on the Sandia National Laboratories Z facility (invited)

Daniel Brian Sinars; Guy R. Bennett; David Franklin Wenger; M. E. Cuneo; D.L. Hanson; John L. Porter; R. G. Adams; Patrick K. Rambo; Dean C. Rovang; I. C. Smith

The Z facility is a 20 MA, 100 ns rise time, pulsed power driver for z-pinch plasma radiation sources. The Z facility can make >200 TW, 1–2 MJ, near-blackbody radiation sources through the compression of cylindrical wire arrays. These sources are being used as drivers to study inertial-confinement fusion capsule implosions, complex radiation–hydrodynamic jet experiments, and wire-array z-pinch physics tests. To backlight plasmas in this environment we have built diagnostics based on spherically bent crystals that provide high spatial resolution (9–10 μm), a narrow spectral bandpass (<0.5 eV), and a large field of view (4 mm×20 mm). These diagnostics use the 2 TW, multi-kJ Z-Beamlet laser to produce x-ray emission sources at 1.865 or 6.151 keV for backlighting.


Applied Optics | 2005

Z-Beamlet: a multikilojoule, terawatt-class laser system

Patrick K. Rambo; I. C. Smith; John L. Porter; Michael James Hurst; C. Shane Speas; R. G. Adams; Antonio J. Garcia; Ellis Dawson; Benjamin D. Thurston; Colleen Wakefield; Jeff W. Kellogg; Michael J. Slattery; H.C. Ives; Robin Scott Broyles; John A. Caird; Alvin C. Erlandson; James E. Murray; William C. Behrendt; Norman D. Neilsen; Joseph M. Narduzzi

A large-aperture (30-cm) kilojoule-class Nd:glass laser system known as Z-Beamlet has been constructed to perform x-ray radiography of high-energy-density science experiments conducted on the Z facility at Sandia National Laboratories, Albuquerque, New Mexico. The laser, operating with typical pulse durations from 0.3 to 1.5 ns, employs a sequence of successively larger multipass amplifiers to achieve up to 3-kJ energy at 1054 nm. Large-aperture frequency conversion and long-distance beam transport can provide on-target energies of up to 1.5 kJ at 527 nm.


Physics of Plasmas | 2006

Compact single and nested tungsten-wire-array dynamics at 14–19MA and applications to inertial confinement fusiona)

M. E. Cuneo; Daniel Brian Sinars; E.M. Waisman; D.E. Bliss; W. A. Stygar; Roger Alan Vesey; R.W. Lemke; I. C. Smith; Patrick K. Rambo; John L. Porter; Gordon Andrew Chandler; T. J. Nash; M.G. Mazarakis; R. G. Adams; E. P. Yu; K.W. Struve; T.A. Mehlhorn; S. V. Lebedev; J. P. Chittenden; Christopher A. Jennings

Wire-array z pinches show promise as a high-power, efficient, reproducible, and low-cost x-ray source for high-yield indirect-drive inertial confinement fusion. Recently, rapid progress has been made in our understanding of the implosion dynamics of compact (20-mm-diam), high-current (11–19MA), single and nested wire arrays. As at lower currents (1–3MA), a single wire array (and both the outer and inner array of a nested system), show a variety of effects that arise from the initially discrete nature of the wires: a long wire ablation phase for 50%-80% of the current pulse width, an axial modulation of the ablation rate prior to array motion, a larger ablation rate for larger diameter wires, trailing mass, and trailing current. Compact nested wire arrays operate in current-transfer or transparent mode because the inner wires remain discrete during the outer array implosion, even for interwire gaps in the outer and inner arrays as small as 0.21mm. These array physics insights have led to nested arrays that...


Plasma Physics and Controlled Fusion | 2006

Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double-pinch-driven hohlraums

M. E. Cuneo; Roger Alan Vesey; Guy R. Bennett; Daniel Brian Sinars; W. A. Stygar; E.M. Waisman; John L. Porter; Patrick K. Rambo; I. C. Smith; S. V. Lebedev; J. P. Chittenden; D.E. Bliss; T. J. Nash; Gordon Andrew Chandler; Bedros Afeyan; E. P. Yu; Robert B. Campbell; R. G. Adams; D.L. Hanson; T.A. Mehlhorn; M. K. Matzen

Over the last several years, rapid progress has been made evaluating the double-z-pinch indirect-drive, inertial confinement fusion (ICF) high-yield target concept (Hammer et al 1999 Phys. Plasmas 6 2129). We have demonstrated efficient coupling of radiation from two wire-array-driven primary hohlraums to a secondary hohlraum that is large enough to drive a high yield ICF capsule. The secondary hohlraum is irradiated from two sides by z-pinches to produce low odd-mode radiation asymmetry. This double-pinch source is driven from a single electrical power feed (Cuneo et al 2002 Phys. Rev. Lett. 88 215004) on the 20 MA Z accelerator. The double z-pinch has imploded ICF capsules with even-mode radiation symmetry of 3.1 ± 1.4% and to high capsule radial convergence ratios of 14–21 (Bennett et al 2002 Phys. Rev. Lett. 89 245002; Bennett et al 2003 Phys. Plasmas 10 3717; Vesey et al 2003 Phys. Plasmas 10 1854). Advances in wire-array physics at 20 MA are improving our understanding of z-pinch power scaling with increasing drive current. Techniques for shaping the z-pinch radiation pulse necessary for low adiabat capsule compression have also been demonstrated.


Review of Scientific Instruments | 2003

Monochromatic x-ray backlighting of wire-array z-pinch plasmas using spherically bent quartz crystals

Daniel Brian Sinars; M. E. Cuneo; Guy R. Bennett; David Franklin Wenger; L. E. Ruggles; Mark F. Vargas; John L. Porter; R. G. Adams; Drew Johnson; K. L. Keller; Patrick K. Rambo; Dean C. Rovang; Hans Seamen; Walter W. Simpson; I. C. Smith; S. C. Speas

X-ray backlighting systems are being developed to diagnose z-pinch, inertial confinement fusion capsule, and complex hydrodynamics experiments on the 20 MA Sandia Z machine. The x-ray backlighter source is a laser-produced plasma created using the Z-Beamlet laser, a 2 TW, 2 kJ Nd:glass laser recently constructed at Sandia. As an alternative to point-projection radiography, we are investigating a different geometry [S. A. Pikuz et al., Rev. Sci. Instrum. 68, 740 (1997)] that uses spherically bent crystal mirrors to simultaneously obtain high spatial resolution and a narrow spectral bandwidth. Backlighting systems using the Si Heα line (1.865 keV) and the Mn Heα line (6.15 keV) are discussed. These systems are capable of spatial resolutions in the 5–10 μm range, a field of view as large as 5 mm by 20 mm, and a spectral bandwidth comparable to the width of the emission line used for backlighting.


Physics of Plasmas | 2004

Study of high Mach number laser driven blast waves

A. Edens; T. Ditmire; J. F. Hansen; M. J. Edwards; R. G. Adams; Patrick K. Rambo; Laurence E. Ruggles; I. C. Smith; John L. Porter

The study of blast waves produced by intense lasers in gases is motivated by the desire to explore astrophysically relevant hydrodynamic phenomena in the laboratory. A systematic scan of laser produced blast waves was performed and the structure of blast waves was examined over a wide range of drive laser energy. Lasers with energies ranging from 10–1000 J illuminated a pin target in either xenon or nitrogen gas, creating a spherical blast wave. A strongly radiating blast wave in xenon gas is observed while blast waves in nitrogen more closely approximate a pure Taylor–Sedov wave. It is also found that at all laser energies, blast waves traveling through xenon gas had their hydrodynamic evolution significantly affected by the passage of illumination laser.


Physics of Plasmas | 2003

Symmetric inertial confinement fusion capsule implosions in a high-yield-scale double-Z-pinch-driven hohlraum on Z

Greg R. Bennett; Roger A. Vesey; Michael Edward Cuneo; John L. Porter; R. G. Adams; Rafael A. Aragon; Patrick K. Rambo; Dean C. Rovang; Laurence E. Ruggles; Walter W. Simpson; I. C. Smith; Christopher Speas; K.W. Struve; David Franklin Wenger; O. L. Landen

Detailed radiation-hydrodynamics calculations indicate that the dual-63-MA Z-pinch high-yield (HY) 220-eV inertial confinement fusion concept [Phys. Plasmas 6, 2129 (1999)] may release 400 MJ of fusion yield, if pulse shaping, capsule preheat, and x-radiation drive uniformity can be acceptably controlled. Radiation symmetry is under detailed investigation in an advanced, 70-eV HY-scale scoping hohlraum [Phys. Rev. Lett. 88, 215004 (2002)] driven by the single 20-MA power feed of Sandia National Laboratories’ Z accelerator. The time-averaged polar radiation asymmetry, 〈ΔI〉/I, is inferred from direct distortion measurements of an imploding capsule’s limb-darkened (“backlit”) shell, via 6.7 keV point projection x-ray imaging. Thus far, 〈ΔI〉/I has been measured at the 3.0±1.4 (%) level, on the best shots, in hohlraums (cylindrical) with length/radius ratios L/R of 1.61 and 1.69, either side of a L/R=1.66 predicted optimum for a zeroed P2 Legendre mode. Simulations suggest that when scaled to 220 eV with zeroe...


Physics of Plasmas | 2003

Radiation symmetry control for inertial confinement fusion capsule implosions in double Z-pinch hohlraums on Z

Roger A. Vesey; Michael Edward Cuneo; John L. Porter; R. G. Adams; Rafael A. Aragon; Patrick K. Rambo; Laurence E. Ruggles; Walter W. Simpson; I. C. Smith; Guy R. Bennett

The double Z-pinch hohlraum high-yield concept [Hammer et al., Phys. Plasmas 6, 2129 (1999)] utilizes two 63-MA Z pinches to heat separate primary hohlraums at either end of a secondary hohlraum containing the cryogenic fusion capsule. Recent experiments on the Z accelerator [Spielman et al., Phys. Plasmas 5, 2105 (1998)] at Sandia National Laboratories have developed an advanced single-sided power feed, double Z-pinch load to study radiation symmetry and pinch power balance using implosion capsules [Cuneo et al., Phys. Rev. Lett. 88, 215004 (2002)]. Point-projection x-ray imaging with the Z-Beamlet Laser mapped the trajectory and distortion of 2-mm diameter plastic ablator capsules. Using the backlit capsule distortion as a symmetry diagnostic, the ability to predictably tune symmetry at the <10% level in fluence by modifying the hohlraum geometry has been demonstrated. Systematic control of the time-integrated P2 Legendre mode asymmetry coefficient over a range of ±6% (±2% considering points nearest the...


Review of Scientific Instruments | 2003

Measurements of 4–10 keV x-ray production with the Z-Beamlet laser

L. E. Ruggles; John L. Porter; Patrick K. Rambo; Walter W. Simpson; Mark F. Vargas; Guy R. Bennett; I. C. Smith

In order to characterize the current backlighting capability of Sandia’s Z-Beamlet laser (ZBL) over a range of high photon energies, we measured the x-ray conversion efficiency of the focused 527 nm ZBL beam into 4–10 keV x rays from He-like emission of the elements Sc through Ge (excluding Ga). The measurements approximated ZBL’s nominal backlighting geometry and laser performance at Sandia’s Z soft x-ray facility by irradiating planar foil targets several microns thick rotated 30° to the laser beam axis with a 600 ps pulse at 1 TW. The focal spot diameter was about 150 μm. This study includes measurements of the K-shell x-ray spectrum, x-ray power, and x-ray spot size with an array of filtered high-bandwidth silicon diodes, a convex LiF crystal spectrometer, step wedge filtered x-ray film, and a filtered x-ray pinhole camera. We found agreement with previous work for comparable laser parameters and recorded decreasing conversion efficiency versus atomic number and He-like photon energy.

Collaboration


Dive into the Patrick K. Rambo's collaboration.

Top Co-Authors

Avatar

Jens Schwarz

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Matthias Geissel

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

John L. Porter

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Mark Kimmel

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

I. C. Smith

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Aaron Edens

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Ian Craig Smith

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Briggs Atherton

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Guy R. Bennett

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge