Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark Kimmel is active.

Publication


Featured researches published by Mark Kimmel.


Physics of Plasmas | 2015

Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics

M. Schollmeier; Adam B Sefkow; Matthias Geissel; Alexey Arefiev; K. A. Flippo; Sandrine A. Gaillard; Randy P. Johnson; Mark Kimmel; Dustin Offermann; Patrick K. Rambo; Jens Schwarz; T. Shimada

High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge of the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results show that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.


Optics Letters | 1998

Simultaneous spatial and temporal walk-off compensation in frequency-doubling femtosecond pulses in ?-BaB 2 O 4

Russell J. Gehr; Mark Kimmel; Arlee V. Smith

We experimentally demonstrate the benefits of simultaneous compensation of spatial and temporal walk-off in frequency doubling of 800-nm 250-fs pulses, using three active and two compensating beta-BaB(2)O(4) crystals. The compensating crystals reverse both birefringent and group-velocity walk-off, resulting in a factor-of-4.5 improvement in doubling efficiency relative to one of the active crystals while maintaining the short pulse duration and the symmetric spatial profile that are characteristic of the single crystal.


Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers | 2009

Meeting thin film design and production challenges for laser damage resistant optical coatings at the Sandia Large Optics Coating Operation

John Curtis Bellum; Damon E. Kletecka; Patrick K. Rambo; I. C. Smith; Mark Kimmel; Jens Schwarz; Matthias Geissel; Guild Copeland; Briggs Atherton; Douglas E. Smith; Claire Smith; Constantine Y. Khripin

Sandias Large Optics Coating Operation provides laser damage resistant optical coatings on meter-class optics required for the ZBacklighter Terawatt and Petawatt lasers. Deposition is by electron beam evaporation in a 2.3 m × 2.3 m × 1.8 m temperature controlled vacuum chamber. Ion assisted deposition (IAD) is optional. Coating types range from antireflection (AR) to high reflection (HR) at S and P polarizations for angle of incidence (AOI) from 0° to 47°. This paper reports progress in meeting challenges in design and deposition of these high laser induced damage threshold (LIDT) coatings. Numerous LIDT tests (NIF-MEL protocol, 3.5 ns laser pulses at 1064 nm and 532 nm) on the coatings confirm that they are robust against laser damage. Typical LIDTs are: at 1064 nm, 45° AOI, Ppol, 79 J/cm2 (IAD 32 layer HR coating) and 73 J/cm2 (non-IAD 32 layer HR coating); at 1064 nm, 32° AOI, 82 J/cm2 (Ppol) and 55 J/cm2 (Spol ) (non-IAD 32 layer HR coating); and at 532 nm, Ppol, 16 J/cm2 (25° AOI) and 19 J/cm2 (45° AOI) (IAD 50 layer HR coating). The demands of meeting challenging spectral, AOI and LIDT performances are highlighted by an HR coating required to provide R > 99.6% reflectivity in Ppol and Spol over AOIs from 24° to 47° within ~ 1% bandwidth at both 527 nm and 1054 nm. Another issue is coating surface roughness. For IAD of HR coatings, elevating the chamber temperature to ~ 120 °C and turning the ion beam off during the pause in deposition between layers reduce the coating surface roughness compared to runs at lower temperatures with the ion beam on continuously. Atomic force microscopy and optical profilometry confirm the reduced surface roughness for these IAD coatings, and tests show that their LIDTs remain high.


Journal of Physics: Conference Series | 2008

Activation of the Z-petawatt laser at Sandia National Laboratories

Jens Schwarz; Patrick K. Rambo; Matthias Geissel; Aaron Edens; I. C. Smith; E. Brambrink; Mark Kimmel; Briggs Atherton

To enhance radiographic capabilities on its Z-Accelerator, Sandia National Laboratories is incorporating a petawatt laser system into the existing Z-Backlighter laser facility. A chirped-pulse laser has been constructed to seed the large Beamlet type Nd:Phosphate glass slab amplifiers. This seed laser consists of an optical parametric chirped pulse amplification (OPCPA) system joined to a Nd:Phosphate glass rod amplifier in order to achieve multi-Joule operation. After injection into the main slab amplifiers up to 500 J of chirped pulse energy is achieved. Two compressor options are available for this output: a lower energy compressor for 100TW (50 J/500 fs) operation and a higher energy compressor for 1PW (500 J/500 fs) operation. While the higher energy compressor is under construction, the 100 TW system is now operational and can achieve focal intensities up to 1019 W/cm2.


Proceedings of SPIE | 2015

An overview of the Ultrafast X-ray Imager (UXI) program at Sandia Labs

Liam D. Claus; Lu Fang; Randolph R. Kay; Mark Kimmel; J. Long; G. K. Robertson; M. Sanchez; John W. Stahoviak; Douglas C. Trotter; John L. Porter

The Ultra-Fast X-ray Imager (UXI) program is an ongoing effort at Sandia National Laboratories to create high speed, multi-frame, time gated Read Out Integrated Circuits (ROICs), and a corresponding suite of photodetectors to image a wide variety of High Energy Density (HED) physics experiments on both Sandia’s Z-Machine and the National Ignition Facility (NIF). The program is currently fielding a 1024 x 448 prototype camera with 25 μm pixel spatial resolution, 2 frames of in-pixel storage and the possibility of exchanging spatial resolution to achieve 4 or 8 frames of storage. The camera’s minimum integration time is 2 ns. Minimum signal target is 1500 e- rms and full well is 1.5 million e-. The design and initial characterization results will be presented as well as a description of future imagers.


Optics Express | 2012

Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor.

Jens Schwarz; Patrick K. Rambo; Mark Kimmel; Briggs Atherton

A wavefront sensor has been used to measure the Kerr nonlinear focal shift of a high intensity ultrashort pulse beam in a focusing beam geometry while accounting for the effects of plasma-defocusing. It is shown that plasma-defocusing plays a major role in the nonlinear focusing dynamics and that measurements of Kerr nonlinearity and ionization are coupled. Furthermore, this coupled effect leads to a novel way that measures the laser ionization rates in air under atmospheric conditions as well as Kerr nonlinearity. The measured nonlinear index n₂ compares well with values found in the literature and the measured ionization rates could be successfully benchmarked to the model developed by Perelomov, Popov, and Terentev (PPT model) [Sov. Phys. JETP 50, 1393 (1966)].


Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers | 2009

Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories

Mark Kimmel; Patrick K. Rambo; Robin Scott Broyles; Matthias Geissel; Jens Schwarz; John Curtis Bellum; Briggs Atherton

To enable laser-based radiography of high energy density physics events on the Z-Accelerator[4,5] at Sandia National Laboratories, a facility known as the Z-Backlighter has been developed. Two Nd:Phosphate glass lasers are used to create x-rays and/or proton beams capable of this radiographic diagnosis: Z-Beamlet (a multi-kilojoule laser operating at 527nm in a few nanoseconds) and Z-Petawatt (a several hundred joule laser operating at 1054nm in the subpicosecond regime) [1,2]. At the energy densities used in these systems, it is necessary to use high damage threshold optical materials, some of which are poorly characterized (especially for the sub-picosecond pulse). For example, Sandia has developed a meter-class dielectric coating capability for system optics. Damage testing can be performed by external facilities for nanosecond 532nm pulses, measuring high reflector coating damage thresholds >80J/cm2 and antireflection coating damage thresholds >20J/cm2 [3]. However, available external testing capabilities do not use femtosecond/picosecond scale laser pulses. To this end, we have constructed a sub-picoseond-laser-based optical damage test system. The damage tester system also allows for testing in a vacuum vessel, which is relevant since many optics in the Z-Backlighter system are used in vacuum. This paper will present the results of laser induced damage testing performed in both atmosphere and in vacuum, with 1054nm sub-picosecond laser pulses. Optical materials/coatings discussed are: bare fused silica and protected gold used for benchmarking; BK7; Zerodur; protected silver; and dielectric optical coatings (halfnia/silica layer pairs) produced by Sandias in-house meter-class coating capability.


Laser Damage Symposium XLII: Annual Symposium on Optical Materials for High Power Lasers | 2010

Laser damage by ns and sub-ps pulses on hafnia/silica anti-reflection coatings on fused silica double-sided polished using zirconia or ceria and washed with or without an alumina wash step.

John Curtis Bellum; Damon E. Kletecka; Mark Kimmel; Patrick K. Rambo; I. C. Smith; Jens Schwarz; Briggs Atherton; Zachary Hobbs; Douglas E. Smith

Sandias Large Optics Coating Operation has extensive results of laser induced damage threshold (LIDT) testing of its anti-reflection (AR) and high reflection coatings on substrates pitch polished using ceria and washed in a process that includes an alumina wash step. The purpose of the alumina wash step is to remove residual polishing compound to minimize its role in laser damage. These LIDT tests are for multi longitudinal mode, ns class pulses at 1064 nm and 532 nm (NIF-MEL protocol) and mode locked, sub-ps class pulses at 1054 nm (Sandia measurements), and show reasonably high and adequate laser damage resistance for coatings in the beam trains of Sandias Z-Backlighter terawatt and petawatt lasers. An AR coating in addition to coatings of our previous reports confirms this with LIDTs of 33.0 J/cm2 for 3.5 ns pulses and 1.8 J/cm2 for 350 fs pulses. In this paper, we investigate both ceria and zirconia in doublesided polishing (common for large flat Z-Backlighter laser optics) as they affect LIDTs of an AR coating on fused silica substrates washed with or without the alumina wash step. For these AR coated, double-sided polished surfaces, ceria polishing in general affords better resistance to laser damage than zirconia polishing and laser damage is less likely with the alumina wash step than without it. This is supported by specific results of laser damage tests with 3.5 ns, multi longitudinal mode, single shot pulses at 1064 nm and 532 nm, with 7.0 ns, single and multi longitudinal mode, single and multi shot pulses at 532 nm, and with 350 fs, mode-locked, single shot pulses at 1054 nm.


Review of Scientific Instruments | 2011

Characterizing plasma mirrors near breakdown

Matthias Geissel; M. Schollmeier; Mark Kimmel; Patrick K. Rambo; Jens Schwarz; Briggs Atherton; E. Brambrink

Experiments dedicated to the characterization of plasma mirrors with a high energy, single shot short-pulse laser were performed at the 100 TW target area of the Z-Backlighter Facility at Sandia National Laboratories. A suite of beam diagnostics was used to characterize a high energy laser pulse with a large aperture through focus imaging setup. By varying the fluence on the plasma mirror around the plasma ignition threshold, critical performance parameters were determined and a more detailed understanding of the way in which a plasma mirror works could be deduced. It was found, that very subtle variations in the laser near field profile will have strong effects on the reflected pulse if the maximum fluence on the plasma mirror approaches the plasma ignition threshold.


Optics Express | 2009

Properties of optical breakdown in BK7 glass induced by an extended-cavity femtosecond laser oscillator

Binh T. Do; Mark C. Phillips; P. A. Miller; Mark Kimmel; Justin Britsch; S.H. Cho

Using an extended-cavity femtosecond oscillator, we investigated optical breakdown in BK7 glass caused by the accumulated action of many laser pulses. By using a pump-probe experiment and collecting the transmitted pump along with the reflected pump and the broadband light generated by the optical breakdown, we measured the build-up time to optical breakdown as a function of the pulse energy, and we also observed the instability of the plasma due to the effect of defocusing and shielding created by the electron gas. The spectrum of the broadband light emitted by the optical breakdown and the origin of the material modification in BK7 glass was studied. We developed a simple model of electromagnetic wave propagation in plasma that is consistent with the observed behavior of the reflection, absorption, and transmission of the laser light.

Collaboration


Dive into the Mark Kimmel's collaboration.

Top Co-Authors

Avatar

Jens Schwarz

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Patrick K. Rambo

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Briggs Atherton

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Matthias Geissel

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

M. Schollmeier

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

I. C. Smith

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

John L. Porter

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

John Curtis Bellum

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Jonathon Shores

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

D.E. Bliss

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge