Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brigitte Voit is active.

Publication


Featured researches published by Brigitte Voit.


Chemical Reviews | 2009

Hyperbranched and Highly Branched Polymer Architectures—Synthetic Strategies and Major Characterization Aspects

Brigitte Voit; Albena Lederer

“Life is branched” was the motto of a special issue of Macromolecular Chemistry and Physics1 on “Branched Polymers”, indicating that branching is of similar importance in the world of synthetic macromolecules as it is in nature. The significance of branched macromolecules has evolved over the last 30 years from just being considered as a side reaction in polymerization or as a precursor step in the formation of networks. Important to this change in perception of branching was the concept of “polymer architectures”, which formed on new starand graft-branched structures in the 1980s and then in the early 1990s on dendrimers and dendritic polymers. Today, clearly, controlled branching is considered to be a major aspect in the design of macromolecules and functional material. Hyperbranched (hb) polymers are a special type of dendritic polymers and have as a common feature a very high branching density with the potential of branching in each repeating unit. They are usually prepared in a one-pot synthesis, which limits the control on molar mass and branching accuracy and leads to “heterogeneous” products with a distribution in molar mass and branching. This distinguishes hyperbranched polymers from perfectly branched and monodisperse dendrimers. In the last 20 years, both classes of dendritic polymers, dendrimers as well as hb polymers, have attracted major attention because of their interesting properties resulting from the branched architecture as well as the high number of functional groups.2 The challenging synthesis of the dendrimers attracted especially scientists with a strong organic chemistry background and led to beautifully designed macromolecules, which allowed a deeper insight into the effect of branching and functionality. Dendrimers have been considered as perfect “nano-objects” where one can control perfectly size and functionality, which is of high interest in nanotechnology and biomedicine. hb polymers, however, were considered from the beginning as products suitable for larger-scale application in typical polymer fields like coatings and resins, where a perfect structure is sacrificed for an easy and affordable synthetic route. Thus, the first structures that were reported paralleled the chemistry used for linear polymers like typical polycondensation for polyester synthesis. More recently, unconventional synthetic methods have been adopted also for hb polymers and related structures. Presently, a vast variety of highly branched structures have been realized and studied regarding their properties and potential application fields. Excellent reviews appeared covering synthesis strategies, properties, and applications, like the very recent tutorial by Carlmark et al.,3 the comprehensive book on hyperbranched polymers covering extensively synthesis and application * E-mail: [email protected]; [email protected]. Chem. Rev. 2009, 109, 5924–5973 5924


Journal of Polymer Science Part A | 2000

New developments in hyperbranched polymers

Brigitte Voit

In the last 12 years the field of hyperbranched polymers has been well established with a large variety of synthetic approaches and fundamental studies on structure and properties of these unique materials. However, new developments involving hyperbranched materials appeared recently, for example, different synthetic strategies, new reaction mechanisms, formation of more complex architectures, a deeper understanding of the branched structure and their kinetic development, and intensive studies on the material properties and possible applications. This demonstrates the high versatility and the possibilities that are still involved in hyperbranched polymers and render it one of the most active fields in polymer science with a very promising future.


Chemical Reviews | 2016

Engineering Functional Polymer Capsules toward Smart Nanoreactors.

Jens Gaitzsch; Xin Huang; Brigitte Voit

Nanoreactors Jens Gaitzsch,*,†,‡ Xin Huang,* and Brigitte Voit* †Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom ‡Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Basel-Stadt, Switzerland School of Chemical Engineering and Technology, Harbin Institute of Technology, 150001 Harbin, Heilongjiang, China Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Saxony, Germany


Biomacromolecules | 2009

Hyperbranched PEI with Various Oligosaccharide Architectures : Synthesis, Characterization, ATP Complexation, and Cellular Uptake Properties

Dietmar Appelhans; Hartmut Komber; Mohiuddin A. Quadir; Sven Richter; Simona Schwarz; Jereon van der Vlist; Achim Aigner; Martin Mueller; Katja Loos; Juergen Seidel; Karl-Friedrich Arndt; Rainer Haag; Brigitte Voit; Martin Müller; Jürgen Seidel

We present a rapid synthetic method for the development of hyperbranched PEIs decorated with different oligosaccharide architectures as carrier systems (CS) for drugs and bioactive molecules for in vitro and in vivo experiments. Reductive amination of hyperbranched PEI with readily available oligosaccharides results in sugar functionalized PEI cores with oligosaccharide shells of different densities. These core-shell architectures were characterized by NMR spectroscopy, elemental analysis, SLS, DLS, IR, and polyelectrolyte titration experiments. ATP complexation of theses polycations was examined by isothermal titration calorimetry to evaluate the binding energy and ATP/CS complexation ratios under physiological conditions. In vitro experiments showed an enhanced cellular uptake of ATP/CS complexes compared to those of the free ATP molecules. The results arise to initiate further noncovalent complexation studies of pharmacologically relevant molecules that may lead to the development of therapeutics based on this polymeric delivery platform.


Journal of the American Chemical Society | 2011

Chain-growth polymerization of unusual anion-radical monomers based on naphthalene diimide: a new route to well-defined n-type conjugated copolymers.

Volodymyr Senkovskyy; Roman Tkachov; Hartmut Komber; Michael Sommer; Maria Heuken; Brigitte Voit; Wilhelm T. S. Huck; V. Kataev; Andreas Petr; Anton Kiriy

Strongly electron-deficient (n-type) main-chain π-conjugated polymers are commonly prepared via well-established step-growth polycondensation protocols which enable limited control over polymerization. Here we demonstrate that activated Zn and electron-deficient brominated thiophene-naphthalene diimide oligomers form anion-radical complexes instead of conventional Zn-organic derivatives. These highly unusual zinc complexes undergo Ni-catalyzed chain-growth polymerization leading to n-type conjugated polymers with controlled molecular weight, relatively narrow polydispersities, and specific end-functions.


Chemistry: A European Journal | 2008

The Influence of Densely Organized Maltose Shells on the Biological Properties of Poly(propylene imine) Dendrimers: New Effects Dependent on Hydrogen Bonding

Barbara Klajnert; Dietmar Appelhans; Hartmut Komber; Nina Morgner; Simona Schwarz; Sven Richter; Bernhard Brutschy; Maksim Ionov; Anatoly K. Tonkikh; Maria Bryszewska; Brigitte Voit

Maltose-modified poly(propylene imine) (PPI) dendrimers were synthesized by reductive amination of unmodified second- to fifth-generation PPI dendrimers in the presence of excess maltose. The dendrimers were characterized by using (1)H NMR, (13)C NMR, and IR spectroscopies; laser-induced liquid beam ionization/desorption mass spectrometry; dynamic light scattering analyses; and polyelectrolyte titration. Their scaffolds have enhanced molecular rigidity and their outer spheres, at which two maltose units are bonded to the former primary amino groups on the surface, have hydrogen-bond-forming properties. Furthermore, the structural features reveal the presence of a dense shell. Experiments involving encapsulation (1-anilinonaphthalene-8-sulfonic acid) and biological properties (hemolysis and interactions with human serum albumin (HSA) and prion peptide 185-208) were performed to compare the modified with the unmodified dendrimers. These experiments gave the following results: 1) The modified dendrimers entrapped a low-molecular-weight fluorescent dye by means of a dendritic box effect, in contrast to the interfacial uptake characteristic of the unmodified PPI dendrimers. 2) Both low- and high-generation dendrimers containing maltose units showed markedly reduced toxicity. 3) The desirable features of bio-interactions depended on the generation of the dendrimer; they were retained after maltose substitution, but were now mainly governed by nonspecific hydrogen-bonding interactions involving the maltose units. The modified dendrimers interacted with HSA as strongly as the parent compounds and appeared to have potential use as antiprion agents. These improvements will initiate the development of the next platform of glycodendrimers in which apparently contrary properties can be combined, and this will enable, for example, therapeutic products such as more efficient and less toxic antiamyloid agents to be synthesized.


Archive | 2001

Polymer Synthesis: Theory and Practice

Dietrich Braun; Harald Cherdron; Matthias Rehahn; Helmut Ritter; Brigitte Voit

Introduction.- Methods and Techniques for the Synthesis, Characterization, Processing and Modification of Polymers.- Synthesis of Macromolecular Substances by Addition Polymerization.- Synthesis of Macromolecular Substances by Condensation Polymerization and Stepwise Addition Polymerization.- - Modification of Macromolecular Substances.


Journal of Controlled Release | 2011

Maltose- and maltotriose-modified, hyperbranched poly(ethylene imine)s (OM-PEIs): Physicochemical and biological properties of DNA and siRNA complexes

Sabrina Höbel; Andrea Loos; Dietmar Appelhans; Simona Schwarz; Jürgen Seidel; Brigitte Voit; Achim Aigner

Polycationic non-viral polymers are widely employed as delivery platforms of plasmid DNA, or of small interfering RNAs (siRNAs) for the induction of RNA interference (RNAi). Among those, poly(ethylene imine)s (PEIs) take a prominent position due to their relatively high efficacy; however, their biodistribution profiles upon systemic delivery and their toxicity pose limitations which can be addressed by the introduction of PEI modifications. In this paper, we systematically analyse physicochemical and biological properties of DNA and siRNA complexes prepared from a set of maltose-, maltotriose- or maltoheptaose-modified hyperbranched PEIs (termed (oligo-)maltose-modified PEIs; OM-PEIs). We show that pH-dependent charge densities of the OM-PEIs correlate with the structure and degree of grafting, and the length of the oligomaltose. Decreased zeta potentials of OM-PEI-based complexes and changes in the thermodynamics of DNA complex formation are observed, while the complex sizes are largely unaffected by maltose grafting and the presence of serum proteins. Furthermore, although complexation efficacies of siRNAs are not altered, complex stabilities are markedly increased in OM-PEI complexes. DNA complex uptake and transfection kinetics are slowed down upon maltose-grafting of the PEI which can be attributed to decreased zeta potentials, and alterations in the uptake mechanisms (clathrin-dependent/clathrin-independent endocytosis) are observed. Independent of the maltose architecture, DNA and siRNA complexes based on maltose-grafted PEI show considerably lower cytotoxicity as compared to PEI complexes. While maltose grafting generally leads to reduced in vitro transfection efficacies, this effect is less profound in some OM-PEI/siRNA complexes as compared to OM-PEI/DNA complexes. Importantly, upon their systemic application in vivo, OM-PEI/siRNA complexes show marked differences in the siRNA biodistribution profile with e.g. substantially decreased siRNA levels in the liver and increased siRNA levels in the muscle. Taken together, we demonstrate that OM-PEI complexes show structure-dependent physicochemical and biological properties and may represent promising, tailor-made platforms for the delivery of siRNAs, particularly for in vivo applications.


Journal of Biomedical Materials Research Part A | 2011

In vivo toxicity of poly(propyleneimine) dendrimers

Barbara Ziemba; Anna Janaszewska; Karol Ciepluch; Maria Krotewicz; Wiesława Agnieszka Fogel; Dietmar Appelhans; Brigitte Voit; Maria Bryszewska; Barbara Klajnert

Dendrimers are highly branched macromolecules with the potential to be used for biomedical applications. Several dendrimers are toxic owing to their positively charged surfaces. However, this toxicity can be reduced by coating these peripheral cationic groups with carbohydrate residues. In this study, the toxicity of three types of 4th generation poly (propyleneimine) dendrimers were investigated in vivo; uncoated (PPI-g4) dendrimers, and dendrimers in which 25% or 100% of surface amino groups were coated with maltotriose (PPI-g4-25%m or PPI-g4-100%m), were administered to Wistar rats. Body weight, food and water consumption, and urine excretion were monitored daily. Blood was collected to investigate biochemical and hematological parameters, and the general condition and behavior of the animals were analyzed. Unmodified PPI dendrimers caused changes in the behavior of rats, a decrease in food and water consumption, and lower body weight gain. In the case of PPI-g4 and PPI-g4-25%m dendrimers, disturbances in urine and hematological and biochemical profiles returned to normal during the recovery period. PPI-g4-100%m was harmless to rats. The PPI dendrimers demonstrated dose- and sugar-modification-degree dependent toxicity. A higher dose of uncoated PPI dendrimers caused toxicity, but surface modification almost completely abolished this toxic effect.


Biomacromolecules | 2010

Influence of surface functionality of poly(propylene imine) dendrimers on protease resistance and propagation of the scrapie prion protein

Marlies Fischer; Dietmar Appelhans; Simona Schwarz; Barbara Klajnert; Maria Bryszewska; Brigitte Voit; Mark Rogers

Accumulation of PrP(Sc), an insoluble and protease-resistant pathogenic isoform of the cellular prion protein (PrP(C)), is a hallmark in prion diseases. Branched polyamines, including PPI (poly(propylene imine)) dendrimers, are able to remove protease resistant PrP(Sc) and abolish infectivity, offering possible applications for therapy. These dendrimer types are thought to act through their positively charged amino surface groups. In the present study, the molecular basis of the antiprion activity of dendrimers was further investigated, employing modified PPI dendrimers in which the positively charged amino surface groups were substituted with neutral carbohydrate units of maltose (mPPI) or maltotriose (m3PPI). Modification of surface groups greatly reduced the toxicity associated with unmodified PPI but did not abolish its antiprion activity, suggesting that the presence of cationic surface groups is not essential for dendrimer action. PPI and mPPI dendrimers of generation 5 were equally effective in reducing levels of protease-resistant PrP(Sc) (PrP(res)) in a dose- and time-dependent manner in ScN2a cells and in pre-existing aggregates in homogenates from infected brain. Solubility assays revealed that total levels of PrP(Sc) in scrapie-infected mouse neuroblastoma (ScN2a) cells were reduced by mPPI. Coupled with the known ability of polyamino dendrimers to render protease-resistant PrP(Sc) in pre-existing aggregates of PrP(Sc) susceptible to proteolysis, these findings strongly suggest that within infected cells dendrimers reduce total amounts of PrP(Sc) by mediating its denaturation and subsequent elimination.

Collaboration


Dive into the Brigitte Voit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanta Banerjee

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar

Albena Lederer

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge