Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Britta Tietjen is active.

Publication


Featured researches published by Britta Tietjen.


New Phytologist | 2010

Estimating the risk of Amazonian forest dieback.

Anja Rammig; Tim E. Jupp; Kirsten Thonicke; Britta Tietjen; Jens Heinke; Sebastian Ostberg; Wolfgang Lucht; Wolfgang Cramer; Peter M. Cox

*Climate change will very likely affect most forests in Amazonia during the course of the 21st century, but the direction and intensity of the change are uncertain, in part because of differences in rainfall projections. In order to constrain this uncertainty, we estimate the probability for biomass change in Amazonia on the basis of rainfall projections that are weighted by climate model performance for current conditions. *We estimate the risk of forest dieback by using weighted rainfall projections from 24 general circulation models (GCMs) to create probability density functions (PDFs) for future forest biomass changes simulated by a dynamic vegetation model (LPJmL). *Our probabilistic assessment of biomass change suggests a likely shift towards increasing biomass compared with nonweighted results. Biomass estimates range between a gain of 6.2 and a loss of 2.7 kg carbon m(-2) for the Amazon region, depending on the strength of CO(2) fertilization. *The uncertainty associated with the long-term effect of CO(2) is much larger than that associated with precipitation change. This underlines the importance of reducing uncertainties in the direct effects of CO(2) on tropical ecosystems.


BioScience | 2012

A Global System for Monitoring Ecosystem Service Change

Heather Tallis; Harold A. Mooney; Sandy Andelman; Patricia Balvanera; Wolfgang Cramer; Daniel S. Karp; Stephen Polasky; Belinda Reyers; Taylor H. Ricketts; Steve Running; Kirsten Thonicke; Britta Tietjen; Ariane Walz

Earths life-support systems are in flux, yet no centralized system to monitor and report these changes exists. Recognizing this, 77 nations agreed to establish the Group on Earth Observations (GEO). The GEO Biodiversity Observation Network (GEO BON) integrates existing data streams into one platform in order to provide a more complete picture of Earths biological and social systems. We present a conceptual framework envisioned by the GEO BON Ecosystem Services Working Group, designed to integrate national statistics, numerical models, remote sensing, and in situ measurements to regularly track changes in ecosystem services across the globe. This information will serve diverse applications, including stimulating new research and providing the basis for assessments. Although many ecosystem services are not currently measured, others are ripe for reporting. We propose a framework that will continue to grow and inspire more complete observation and assessments of our planets life-support systems.


Nature Communications | 2017

Climate change reduces extent of temperate drylands and intensifies drought in deep soils

Daniel R. Schlaepfer; John B. Bradford; William K. Lauenroth; Seth M. Munson; Britta Tietjen; Sonia A. Hall; Scott D. Wilson; Michael C. Duniway; Gensuo Jia; David A. Pyke; Ariuntsetseg Lkhagva; Khishigbayar Jamiyansharav

Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas.


FEMS Microbiology Ecology | 2015

Community priming--effects of sequential stressors on microbial assemblages.

Matthias C. Rillig; Jens Rolff; Britta Tietjen; Jeannine Wehner; Diana R. Andrade-Linares

Microbes in nature are exposed to complex environmental stressors which challenge their functioning or survival. Priming is the improved reaction of an organism to an environmental stressor following a preceding, often milder stress event. This phenomenon, also known as cross-protection, predictive response strategy or acquired stress resistance, is becoming an increasingly well-established research topic in microbiology, which has so far been examined from the perspective of a single organism or population. However, microbes in nature occur as part of communities; thus it is timely to highlight the need to also include this level beyond the individual species in studies of priming effects. We here introduce a conceptual framework for such studies at the level of the microbial assemblage and also chart a way forward for empirical and theoretical study. We illustrate some of the elements of our framework with a simple simulation model. Given the dynamic habitat of many microbes, incorporating priming is important for a more complete understanding of microbial community responses to stress.


Global Change Biology | 2017

Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands

Britta Tietjen; Daniel R. Schlaepfer; John B. Bradford; William K. Lauenroth; Sonia A. Hall; Michael C. Duniway; Tamara Hochstrasser; Gensuo Jia; Seth M. Munson; David A. Pyke; Scott D. Wilson

Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change-induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water-limited ecosystems.


Theoretical Ecology | 2011

Low-dimensional trade-offs fail to explain richness and structure in species-rich plant communities

Alexandra Esther; Jürgen Groeneveld; Neal J. Enright; Ben P. Miller; Byron B. Lamont; George L. W. Perry; Britta Tietjen; Florian Jeltsch

Mathematical models and ecological theory suggest that low-dimensional life history trade-offs (i.e. negative correlation between two life history traits such as competition vs. colonisation) may potentially explain the maintenance of species diversity and community structure. In the absence of trade-offs, we would expect communities to be dominated by ‘super-types’ characterised by mainly positive trait expressions. However, it has proven difficult to find strong empirical evidence for such trade-offs in species-rich communities. We developed a spatially explicit, rule-based and individual-based stochastic model to explore the importance of low-dimensional trade-offs. This model simulates the community dynamics of 288 virtual plant functional types (PFTs), each of which is described by seven life history traits. We consider trait combinations that fit into the trade-off concept, as well as super-types with little or no energy constraints or resource limitations, and weak PFTs, which do not exploit resources efficiently. The model is parameterised using data from a fire-prone, species-rich Mediterranean-type shrubland in southwestern Australia. We performed an exclusion experiment, where we sequentially removed the strongest PFT in the simulation and studied the remaining communities. We analysed the impact of traits on performance of PFTs in the exclusion experiment with standard and boosted regression trees. Regression tree analysis of the simulation results showed that the trade-off concept is necessary for PFT viability in the case of weak trait expression combinations such as low seed production or small seeds. However, species richness and diversity can be high despite the presence of super-types. Furthermore, the exclusion of super-types does not necessarily lead to a large increase in PFT richness and diversity. We conclude that low-dimensional trade-offs do not provide explanations for multi-species co-existence contrary to the prediction of many conceptual models.


Remote Sensing | 2016

Dryland Vegetation Functional Response to Altered Rainfall Amounts and Variability Derived from Satellite Time Series Data

Gregor Ratzmann; Ute Gangkofner; Britta Tietjen; Rasmus Fensholt

Vegetation productivity is an essential variable in ecosystem functioning. Vegetation dynamics of dryland ecosystems are most strongly determined by water availability and consequently by rainfall and there is a need to better understand how water limited ecosystems respond to altered rainfall amounts and variability. This response is partly determined by the vegetation functional response to rainfall (β) approximated by the unit change in annual vegetation productivity per unit change in annual rainfall. Here, we show how this functional response from 1983 to 2011 is affected by below and above average rainfall in two arid to semi-arid subtropical regions in West Africa (WA) and South West Africa (SWA) differing in interannual variability of annual rainfall (higher in SWA, lower in WA). We used a novel approach, shifting linear regression models (SLRs), to estimate gridded time series of β. The SLRs ingest annual satellite based rainfall as the explanatory variable and annual satellite-derived vegetation productivity proxies (NDVI) as the response variable. Gridded β values form unimodal curves along gradients of mean annual precipitation in both regions. β is higher in SWA during periods of below average rainfall (compared to above average) for mean annual precipitation <600 mm. In WA, β is hardly affected by above or below average rainfall conditions. Results suggest that this higher β variability in SWA is related to the higher rainfall variability in this region. Vegetation type-specific β follows observed responses for each region along rainfall gradients leading to region-specific responses for each vegetation type. We conclude that higher interannual rainfall variability might favour a more dynamic vegetation response to rainfall. This in turn may enhance the capability of vegetation productivity of arid and semi-arid regions to better cope with periods of below average rainfall conditions.


Scientific Reports | 2017

Grazing exclusion by fencing non-linearly restored the degraded alpine grasslands on the Tibetan Plateau

Jianshuang Wu; Yunfei Feng; Xianzhou Zhang; Susanne Wurst; Britta Tietjen; Paolo Tarolli; Chunqiao Song

Resilience is an important aspect of the non-linear restoration of disturbed ecosystems. Fenced grassland patches on the northern Tibetan Plateau can be used to examine the resistance and resilience of degraded alpine grasslands to grazing and to a changing climate. To examine the non-linearity of restoration, we used moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) as a proxy for productivity during a ten-year restoration by fencing. Degraded alpine grasslands exhibited three restoration trajectories: an equilibrium in meadows, a non-linear increase across steppes, and an abrupt impulse in desert-steppes following a slight increase in productivity. Combined with weather conditions, the ten-year grazing exclusion has successfully enhanced the NDVI on the most degraded steppes, but did not do so efficiently on either meadows or desert-steppes. Warming favors the NDVI enhancement of degraded meadows, but higher temperatures limited the restoration of degraded steppes and desert-steppes. Precipitation is necessary to restore degraded alpine grasslands, but more precipitation might be useless for meadows due to lower temperatures and for desert-steppes due to limitations caused by the small species pool. We suggest that detailed field observations of community compositional changes are necessary to better understand the mechanisms behind such non-linear ecological restorations.


FEMS Microbiology Ecology | 2017

Solving the puzzle of yeast survival in ephemeral nectar systems: exponential growth is not enough

Sebastian L. Hausmann; Britta Tietjen; Matthias C. Rillig

ABSTRACT Flower nectar is a sugar‐rich ephemeral habitat for microorganisms. Nectar‐borne yeasts are part of the microbial community and can affect pollination by changing nectar chemistry, attractiveness to pollinators or flower temperature if yeast population densities are high. Pollinators act as dispersal agents in this system; however, pollination events lead potentially to shrinking nectar yeast populations. We here examine how sufficiently high cell densities of nectar yeast can develop in a flower. In laboratory experiments, we determined the remaining fraction of nectar yeast cells after nectar removal, and used honeybees to determine the number of transmitted yeast cells from one flower to the next. The results of these experiments directly fed into a simulation model providing an insight into movement and colonization ecology of nectar yeasts. We found that cell densities only reached an ecologically relevant size for an intermediate pollination probability. Too few pollination events reduce yeast inoculation rate and too many reduce yeast population size strongly. In addition, nectar yeasts need a trait combination of at least an intermediate growth rate and an intermediate remaining fraction to compensate for highly frequent decimations. Our results can be used to predict nectar yeast dispersal, growth and consequently their ecological effects. &NA; Graphical Abstract Figure. The authors examine how nectar yeasts disperse and how their populations develop cell densities sufficient to have ecological effects when faced with regular decimation by pollinator visits.


Journal of Geophysical Research | 2018

Functional Group, Biomass, and Climate Change Effects on Ecological Drought in Semiarid Grasslands

Scott D. Wilson; Daniel R. Schlaepfer; John B. Bradford; William K. Lauenroth; Michael C. Duniway; Sonia A. Hall; Khishigbayar Jamiyansharav; Gensuo Jia; Ariuntsetseg Lkhagva; Seth M. Munson; David A. Pyke; Britta Tietjen

Water relations in plant communities are influenced both by contrasting functional groups (grasses and shrubs) and by climate change via complex effects on interception, uptake, and transpiration. ...

Collaboration


Dive into the Britta Tietjen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirsten Thonicke

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John B. Bradford

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Michael C. Duniway

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Seth M. Munson

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge