Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce H. Hasegawa is active.

Publication


Featured researches published by Bruce H. Hasegawa.


The Journal of Nuclear Medicine | 2008

Small-Animal SPECT and SPECT/CT: Important Tools for Preclinical Investigation

Benjamin L. Franc; Paul D. Acton; Carina Mari; Bruce H. Hasegawa

The need to study dynamic biologic processes in intact small-animal models of disease has stimulated the development of high-resolution nuclear imaging methods. These methods are capable of clarifying molecular interactions important in the onset and progression of disease, assessing the biologic relevance of drug candidates and potential imaging agents, and monitoring therapeutic effectiveness of pharmaceuticals serially within a single-model system. Single-photon–emitting radionuclides have many advantages in these applications, and SPECT can provide 3-dimensional spatial distributions of γ- (and x-) ray–emitting radionuclide imaging agents or therapeutics. Furthermore, combining SPECT with CT in a SPECT/CT system can assist in defining the anatomic context of biochemical processes and improve the quantitative accuracy of the SPECT data. Over the past decade, dedicated small-animal SPECT and SPECT/CT systems have been developed in academia and industry. Although significant progress in this arena has been realized through system development and biologic application, further innovation continues to address challenges in camera sensitivity, spatial resolution, and image reconstruction and quantification. The innumerable applications of small-animal SPECT and SPECT/CT in drug development, cardiology, neurology, and oncology are stimulating further investment in education, research, and development of these dedicated small-animal imaging modalities.


The Journal of Nuclear Medicine | 2007

Partial-volume correction in PET: Validation of an iterative postreconstruction method with phantom and patient data

Boon-Keng Teo; Youngho Seo; Stephen L. Bacharach; Jorge A. Carrasquillo; Steven K. Libutti; Himanshu P. Shukla; Bruce H. Hasegawa; Randall A. Hawkins; Benjamin L. Franc

Partial-volume errors (PVEs) in PET can cause incorrect estimation of radiopharmaceutical uptake in small tumors. An iterative postreconstruction method was evaluated that corrects for PVEs without a priori knowledge of tumor size or background. Methods: Volumes of interest (VOIs) were drawn on uncorrected PET images. PVE-corrected images were produced using an iterative 3-dimensional deconvolution algorithm and a local point spread function. The VOIs were projected on the corrected image to estimate the PVE-corrected mean activity concentration. These corrected mean values were compared with uncorrected maximum and mean values. Simulated data were generated as a first test of the correction algorithm. Phantom measurements were made using 18F-FDG–filled spheres in a scattering medium. Clinical validation used 154 surrogate tumors from 9 patients. The surrogate tumors were blood-pool images of the descending aorta as well as mesenteric and iliac arteries and veins. Surrogate tumors ranged in diameter from 5 to 25 mm. Analysis used 18F-FDG and 11C-CO datasets (both dynamic and static). Values representing “truth” were derived from imaging the blood pool in large structures (e.g., the left ventricle, left atrium, or sections of the aorta) where PVEs were negligible. Surrogate tumor sizes were measured from contrast CT. Results: The PVE-correction technique, when applied to the mean value in spheric phantoms, yielded recovery coefficients of 87% for an 8-mm-diameter sphere and between 100% and 103% for spheres between 13 and 29 mm. For the human studies, PVE-corrected data recovered a large fraction of the true activity concentration (86% ± 7% for an 8-mm-diameter tumor and 98% ± 8% for tumors between 10 and 24 mm). For tumors smaller than 18 mm, the PVE-corrected mean values were less biased (P < 0.05) than the uncorrected maximum or mean values. Conclusion: Iterative postreconstruction PVE correction generated more accurate uptake measurements in subcentimeter tumors for both phantoms and patients than the uncorrected values. The method eliminates the requirement for segmenting anatomic data and estimating tumor metabolic size or tumor background level. This technique applies a PVE correction to the mean voxel value within a VOI, yielding a more accurate estimate of uptake than the maximum voxel value.


Seminars in Nuclear Medicine | 2008

Technological Development and Advances in Single-Photon Emission Computed Tomography/Computed Tomography

Youngho Seo; Carina Mari; Bruce H. Hasegawa

Single-photon emission computed tomography/computed tomography (SPECT/CT) has emerged during the past decade as a means of correlating anatomical information from CT with functional information from SPECT. The integration of SPECT and CT in a single imaging device facilitates anatomical localization of the radiopharmaceutical to differentiate physiological uptake from that associated with disease and patient-specific attenuation correction to improve the visual quality and quantitative accuracy of the SPECT image. The first clinically available SPECT/CT systems performed emission-transmission imaging using a dual-headed SPECT camera and a low-power x-ray CT subsystem. Newer SPECT/CT systems are available with high-power CT subsystems suitable for detailed anatomical diagnosis, including CT coronary angiography and coronary calcification that can be correlated with myocardial perfusion measurements. The high-performance CT capabilities also offer the potential to improve compensation of partial volume errors for more accurate quantitation of radionuclide measurement of myocardial blood flow and other physiological processes and for radiation dosimetry for radionuclide therapy. In addition, new SPECT technologies are being developed that significantly improve the detection efficiency and spatial resolution for radionuclide imaging of small organs including the heart, brain, and breast, and therefore may provide new capabilities for SPECT/CT imaging in these important clinical applications.


Medical Physics | 2004

Radiation dose estimate in small animal SPECT and PET.

Tobias Funk; Mingshan Sun; Bruce H. Hasegawa

Calculations of radiation dose are important in assessing the medical and biological implications of ionizing radiation in medical imaging techniques such as SPECT and PET. In contrast, radiation dose estimates of SPECT and PET imaging of small animals are not very well established. For that reason we have estimated the whole-body radiation dose to mice and rats for isotopes such as 18F, 99mTc, 201Tl, (111)In, 123I, and 125I that are used commonly for small animal imaging. We have approximated mouse and rat bodies with uniform soft tissue equivalent ellipsoids. The mouse and rat sized ellipsoids had a mass of 30 g and 300 g, respectively, and a ratio of the principal axes of 1:1:4 and 0.7:1:4. The absorbed fractions for various photon energies have been calculated using the Monte Carlo software package MCNP. Using these values, we then calculated MIRD S-values for two geometries that model the distribution of activity in the animal body: (a) a central point source and (b) a homogeneously distributed source, and compared these values against S-value calculations for small ellipsoids tabulated in MIRD Pamphlet 8 to validate our results. Finally we calculated the radiation dose taking into account the biological half-life of the radiopharmaceuticals and the amount of activity administered. Our calculations produced S-values between 1.06 x 10(-13) Gy/Bq s and 2.77 x 10(-13) Gy/Bq s for SPECT agents, and 15.0 x 10(-13) Gy/Bq s for the PET agent 18F, assuming mouse sized ellipsoids with uniform source distribution. The S-values for a central point source in an ellipsoid are about 10% higher than the values obtained for the uniform source distribution. Furthermore, the S-values for mouse sized ellipsoids are approximately 10 times higher than for the rat sized ellipsoids reflecting the difference in mass. We reviewed published data to obtain administered radioactivity and residence times for small animal imaging. From these values and our computed S-values we estimated that the whole body dose in small animals ranges between 6 cGy and 90 cGy for mice and between about 1 cGy and 27 cGy for rats. The whole body dose in small animal imaging can be very high in comparison to the lethal dose to mice (LD50/30 approximately 7 Gy). For this reason the dose in small animal imaging should be monitored carefully and the administered activity should be kept to a minimum. These results also underscore the need of further development of instrumentation that improves detection efficiency and reduces radiation dose in small animal imaging.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The macrophage-stimulating protein pathway promotes metastasis in a mouse model for breast cancer and predicts poor prognosis in humans

Alana L. Welm; Julie B. Sneddon; C. Taylor; Dimitry S.A. Nuyten; Marc J. van de Vijver; Bruce H. Hasegawa; J. Michael Bishop

A better understanding of tumor metastasis requires development of animal models that authentically reproduce the metastatic process. By modifying an existing mouse model of breast cancer, we discovered that macrophage-stimulating protein promoted breast tumor growth and metastasis to several organs. A special feature of our findings was the occurrence of osteolytic bone metastases, which are prominent in human breast cancer. To explore the clinical relevance of our model, we examined expression levels of three genes involved in activation of the MSP signaling pathway (MSP, MT-SP1, and MST1R) in human breast tumors. We found that overexpression of MSP, MT-SP1, and MST1R was a strong independent indicator of both metastasis and death in human breast cancer patients and significantly increased the accuracy of an existing gene expression signature for poor prognosis. These data suggest that signaling initiated by MSP is an important contributor to metastasis of breast cancer and introduce an independent biomarker for assessing the prognosis of humans with breast cancer.


Medical Physics | 2006

A multipinhole small animal SPECT system with submillimeter spatial resolution

Tobias Funk; Philippe Despres; William C. Barber; Kanai S. Shah; Bruce H. Hasegawa

Single photon emission computed tomography (SPECT) is an important technology for molecular imaging studies of small animals. In this arena, there is an increasing demand for high performance imaging systems that offer improved spatial resolution and detection efficiency. We have designed a multipinhole small animal imaging system based on position sensitive avalanche photodiode (PSAPD) detectors with the goal of submillimeter spatial resolution and high detection efficiency, which will allow us to minimize the radiation dose to the animal and to shorten the time needed for the imaging study. Our design will use 8 x 24 mm2 PSAPD detector modules coupled to thallium-doped cesium iodide [CsI(Tl)] scintillators, which can achieve an intrinsic spatial resolution of 0.5 mm at 140 keV. These detectors will be arranged in rings of 24 modules each; the animal is positioned in the center of the 9 stationary detector rings which capture projection data from the animal with a cylindrical tungsten multipinhole collimator. The animal is supported on a bed which can be rocked about the central axis to increase angular sampling of the object. In contrast to conventional SPECT pinhole systems, in our design each pinhole views only a portion of the object. However, the ensemble of projection data from all of the multipinhole detectors provide angular sampling that is sufficient to reconstruct tomographic data from the object. The performance of this multipinhole PSAPD imaging system was simulated using a ray tracing program that models the appropriate point spread functions and then was compared against the performance of a dual-headed pinhole SPECT system. The detection efficiency of both systems was simulated and projection data of a hot rod phantom were generated and reconstructed to assess spatial resolution. Appropriate Poisson noise was added to the data to simulate an acquisition time of 15 min and an activity of 18.5 MBq distributed in the phantom. Both sets of data were reconstructed with an ML-EM reconstruction algorithm. In addition, the imaging performance of both systems was evaluated with a uniformity phantom and a realistic digital mouse phantom. Simulations show that our proposed system produces a spatial resolution of 0.8 mm and an average detection efficiency of 630 cps/MBq. In contrast, simulations of the dual-headed pinhole SPECT system produce a spatial resolution of 1.1 mm and an average detection efficiency of 53 cps/MBq. These results suggest that our novel design will achieve high spatial resolution and will improve the detection efficiency by more than an order of magnitude compared to a dual-headed pinhole SPECT system. We expect that this system can perform SPECT with submillimeter spatial resolution, high throughput, and low radiation dose suitable for in vivo imaging of small animals.


Academic Radiology | 2002

Dual-modality imaging of function and physiology.

Bruce H. Hasegawa; Koji Iwata; Kenneth H. Wong; M.C. Wu; Angela J. Da Silva; H. Roger Tang; William C. Barber; Andrew H. Hwang; Anne E. Sakdinawat

Dual-modality imaging is a technique in which computed tomography (CT) or magnetic resonance imaging is combined with positron emission tomography or single-photon emission CT to acquire structural and functional images with an integated system. The data are acquired in a single procedure; the patient remains on the scanner table while undergoing both x-ray and radionuclide studies to facilitate correlation between the structural and functional images. The resulting data can aid in localization, enabling more specific diagnosis than can be obtained with a conventional imaging study. In addition, the anatomic information can be used to compensate the correlated radionuclide data for physical perturbations such as photon attenuation, scatter radiation, and partial volume errors. Thus, dual-modality imaging provides a priori information that can improve both the visual quality and the quantitative accuracy of the radionuclide images. Dual-modality imaging systems are also being developed for biologic research involving small animals. Small-animal dual-modality systems offer advantages for measurements that currently are performed invasively with autoradiography and tissue sampling. By acquiring data noninvasively, dual-modality imaging permits serial studies in a single animal, enables measurements to be performed with fewer animals, and improves the statistical quality of the data.


Technology in Cancer Research & Treatment | 2002

Dual-Modality Imaging of Cancer with SPECT/CT

Bruce H. Hasegawa; Kenneth H. Wong; Koji Iwata; William C. Barber; Andrew B. Hwang; Anne E. Sakdinawat; Mohan R. Ramaswamy; David C. Price; Randall A. Hawkins

Dual-modality imaging is an in vivo diagnostic technique that obtains structural and functional information directly from patient studies in a way that cannot be achieved with separate imaging systems alone. Dual-modality imaging systems are configured by combining computed tomography (CT) with radionuclide imaging (using positron emission tomography (PET) or single-photon emission computed tomography (SPECT)) on a single gantry which allows both functional and structural imaging to be performed during a single imaging session without having the patient leave the imaging system. A SPECT/CT system developed at UCSF is being used in a study to determine if dual-modality imaging offers advantages for assessment of patients with prostate cancer using111 In-ProstaScint®, a radiolabeled antibody for the prostate-specific membrane antigen.111 In-ProstaScint® images are reconstructed using an iterative maximum-likelihood expectation-maximization (ML-EM) algorithm with correction for photon attenuation using a patient-specific map of attenuation coefficients derived from CT. The ML-EM algorithm accounts for the dual-photon nature of the111 In-labeled radionuclide, and incorporates correction for the geometric response of the radionuclide collimator. The radionuclide image then can be coregistered and overlaid in color on a grayscale CT image for improved localization of the functional information from SPECT. Radionuclide images obtained with SPECT/CT and reconstructed using ML-EM with correction for photon attenuation and collimator response improve image quality in comparison to conventional radionuclide images obtained with filtered backprojection reconstruction. These results illustrate the potential advantages of dual-modality imaging for improving the quality and the localization of radionuclide uptake for staging disease, planning treatment, and monitoring therapeutic response in patients with cancer.


Medical Imaging '90, Newport Beach, 4-9 Feb 90 | 1990

Description of a simultaneous emission-transmission CT system

Bruce H. Hasegawa; Eric L. Gingold; Susan M. Reilly; Soo Chin Liew; Christopher E. Cann

We are designing an instrument which will perform correlated emission-transmission image acquisition, but which departs from previous systems by incorporating a low-power x-ray tube and generator, rather than a radionuclide source, for the transmission image. The system uses an array of high-purity germanium (HPGe) detectors and detector electronics with energy discrimination circuitry to separate x-rays (at 100 or 120 kVp) from higher energy gamma rays from the 99mTc or 123j radiopharmaceutical injected into the patient. The data acquisition electronics have time constants matching the charge collection time (50 ns) of the HPGe detectors to maximize count-rate capabilities (up to 1 million cps per detector element), while maintaining adequate energy resolution (approximately 10% FWHM). Each detector channel has two energy windows for simultaneous transmission-emission imaging or for dual-energy x-ray studies. A host computer provides system control as well as data acquisition, data correction, tomographic image reconstruction, image display, and data analysis. As a radionuclide imaging system, this instrument will function as a single-slice SPECT scanner with high-count rate capabilities and excellent energy resolution for imaging short-lived radionuclides, improved photopeak discrimination and scatter rejection, and simultaneous imaging of multiple radionuclides. The system also will generate radiographic images in either a tomographic or projection scanning mode, while dual-energy x-ray CT will provide material specific imaging. However, the novel and potentially powerful capabilities of this instrument would derive from its inherent correlation of functional information from SPECT with precise anatomic information from CT or the material-specific morphologic information from dual-energy x-ray CT. The simultaneously acquired radiographic images should relieve the deficiencies of poor statistics and limited spatial resolution commonly associated with SPECT systems. Dual-energy xray CT also can provide an energy-corrected and anatomically-correlated map of attenuation coefficients for more accurate quantitation of emission radionuclide data.


Journal of the American College of Cardiology | 2003

Pinhole single-photon emission computed tomography for myocardial perfusion imaging of mice

Max C. Wu; Dong-Wei Gao; Richard E. Sievers; Randall J. Lee; Bruce H. Hasegawa; Michael W. Dae

OBJECTIVES Although transgenic mice have emerged as powerful experimental models of cardiovascular disease, methods for in vivo phenotypic assessment and characterization remain limited, motivating the development of new instruments for biologic measurement. BACKGROUND We have developed a single-photon emission computed tomography system with a pinhole collimator (pinhole SPECT) for high-resolution cardiovascular imaging of mice. In this study, we describe a protocol for myocardial perfusion imaging of mice using technetium-99m ((99m)Tc)-sestamibi and demonstrate the feasibility for measurement of perfusion defect size from pinhole SPECT images. METHODS Mice were anesthetized and injected with 370 MBq (10 mCi) of (99m)Tc-sestamibi. Tomographic projection images were acquired by rotating each mouse in a vertical axis in front of a stationary clinical scintillation camera equipped with a pinhole collimator. BALB/c mice (n = 15) were imaged after the permanent ligation of the left anterior descending coronary artery. The resulting defect size was measured from circumferential profiles of short-axis images. After imaging, the hearts were excised and sectioned to obtain ultra-high resolution digital autoradiographs of (99m)Tc-sestamibi, from which the actual infarct size was determined. RESULTS Reconstructed image quality was equivalent to that obtained for clinical myocardial perfusion imaging. Linear regression analysis produced a correlation coefficient of 0.83 (p < 0.001) between the measured and actual values of the defect size. CONCLUSIONS These results demonstrate that myocardial perfusion can be characterized qualitatively and quantitatively in mice using pinhole SPECT.

Collaboration


Dive into the Bruce H. Hasegawa's collaboration.

Top Co-Authors

Avatar

Tobias Funk

University of California

View shared research outputs
Top Co-Authors

Avatar

Koji Iwata

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael W. Dae

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youngho Seo

University of California

View shared research outputs
Top Co-Authors

Avatar

Charles A. Mistretta

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

H.R. Tang

University of California

View shared research outputs
Top Co-Authors

Avatar

Walter W. Peppler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mingshan Sun

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge