Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruno Alicke is active.

Publication


Featured researches published by Bruno Alicke.


Science | 2009

Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma.

Robert L. Yauch; Gerrit J. P. Dijkgraaf; Bruno Alicke; Thomas Januario; Christina P. Ahn; Thomas Holcomb; Kanan Pujara; Jeremy Stinson; Christopher A. Callahan; Tracy Tang; J. Fernando Bazan; Zhengyan Kan; Somasekar Seshagiri; Christine L. Hann; Stephen E. Gould; Jennifer A. Low; Charles M. Rudin; Frederic J. de Sauvage

A Smooth(ened) Path to Drug Resistance The Hedgehog (Hh) signaling pathway has emerged as a key contributor to the growth of medulloblastoma, an aggressive brain tumor. GDC-0449, a drug that ramps down this signaling pathway by binding to the Hh pathway component Smoothened, was recently shown to induce rapid and dramatic tumor regression in a patient with metastatic medulloblastoma, but the tumor eventually developed resistance to the drug. Yauch et al. (p. 572, published online 3 September) show that resistance arose because the tumor acquired a mutation in Smoothened that disrupts binding of the drug. Identification of this resistance mechanism may facilitate the design of next-generation drugs for this type of cancer. A mutation that prevents binding of a promising drug lead to its target protein confers resistance in a human brain tumor. The Hedgehog (Hh) signaling pathway is inappropriately activated in certain human cancers, including medulloblastoma, an aggressive brain tumor. GDC-0449, a drug that inhibits Hh signaling by targeting the serpentine receptor Smoothened (SMO), has produced promising anti-tumor responses in early clinical studies of cancers driven by mutations in this pathway. To evaluate the mechanism of resistance in a medulloblastoma patient who had relapsed after an initial response to GDC-0449, we determined the mutational status of Hh signaling genes in the tumor after disease progression. We identified an amino acid substitution at a conserved aspartic acid residue of SMO that had no effect on Hh signaling but disrupted the ability of GDC-0449 to bind SMO and suppress this pathway. A mutation altering the same amino acid also arose in a GDC-0449–resistant mouse model of medulloblastoma. These findings show that acquired mutations in a serpentine receptor with features of a G protein–coupled receptor can serve as a mechanism of drug resistance in human cancer.


Cancer Research | 2011

Small molecule inhibition of GDC-0449 refractory Smoothened mutants and downstream mechanisms of drug resistance

Gerrit J. P. Dijkgraaf; Bruno Alicke; Lasse Weinmann; Thomas Januario; Kristina West; Zora Modrusan; Dan Burdick; Richard Goldsmith; Kirk Robarge; Dan Sutherlin; Suzie J. Scales; Stephen E. Gould; Robert L. Yauch; Frederic J. de Sauvage

Inappropriate Hedgehog (Hh) signaling has been directly linked to medulloblastoma (MB), a common malignant brain tumor in children. GDC-0449 is an Hh pathway inhibitor (HPI) currently under clinical investigation as an anticancer agent. Treatment of a MB patient with GDC-0449 initially regressed tumors, but this individual ultimately relapsed with a D473H resistance mutation in Smoothened (SMO), the molecular target of GDC-0449. To explore the role of the mutated aspartic acid residue in SMO function, we substituted D473 with every amino acid and found that all functional mutants were resistant to GDC-0449, with positively charged residues conferring potential oncogenic properties. Alanine scan mutagenesis of SMO further identified E518 as a novel prospective mutation site for GDC-0449 resistance. To overcome this form of acquired resistance, we screened a panel of chemically diverse HPIs and identified several antagonists with potent in vitro activity against these GDC-0449-resistant SMO mutants. The bis-amide compound 5 was of particular interest, as it was able to inhibit tumor growth mediated by drug resistant SMO in a murine allograft model of MB. However, focal amplifications of the Hh pathway transcription factor Gli2 and the Hh target gene cyclin D1 (Ccnd1) were observed in two additional resistant models, indicating that resistance may also occur downstream of SMO. Importantly, these HPI resistant MB allografts retained their sensitivity to PI3K inhibition, presenting additional opportunities for the treatment of such tumors.


Molecular Cancer Therapeutics | 2006

The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models

Han Ying; Sandra Biroc; Wei‐Wei Li; Bruno Alicke; Jian-Ai Xuan; Rene Pagila; Yasuhiro Ohashi; Toshiya Okada; Yoichi Kamata; Harald Dinter

The ability of cancer cells to undergo invasion and migration is a prerequisite for tumor metastasis. Rho, a Ras-related small GTPase, and the Rho-associated coiled coil–containing protein kinases (Rho kinases, ROCK1 and ROCK2) are key regulators of focal adhesion, actomyosin contraction, and thus cell motility. Inhibitors of this pathway have been shown to inhibit tumor cell motility and metastasis. Here, we show that fasudil [1-(5-isoquinolinesulfonyl)-homopiperazine], an orally available inhibitor of Rho kinases, and its metabolite 1-(hydroxy-5-isoquinoline sulfonyl-homopiperazine) (fasudil-OH) modify tumor cell morphology and inhibit tumor cell migration and anchorage-independent growth. In addition, we show that fasudil inhibited tumor progression in three independent animal models. In the MM1 peritoneal dissemination model, tumor burden and ascites production were reduced by >50% (P < 0.05). In the HT1080 experimental lung metastasis model, fasudil decreased lung nodules by ∼40% (P < 0.05). In the orthotopic breast cancer model with MDA-MB-231, there were 3-fold more tumor-free mice in the fasudil-treated group versus saline control group (P < 0.01). Fasudil has been approved for the treatment of cerebral vasospasm and associated cerebral ischemic symptoms. In patients, fasudil is well tolerated without any serious adverse reactions. Therefore, the concept of Rho kinase inhibition as an antimetastatic therapy for cancer can now be clinically explored. [Mol Cancer Ther 2006;5(9):2158–64]


Proceedings of the National Academy of Sciences of the United States of America | 2011

Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells

Weiwei Chen; Tracy Tang; Jeff Eastham-Anderson; Debra Dunlap; Bruno Alicke; Michelle Nannini; Stephen Jay Gould; Robert L. Yauch; Zora Modrusan; Kelly J. DuPree; Walter C. Darbonne; Greg Plowman; Frederic J. de Sauvage; Christopher A. Callahan

Hedgehog (Hh) signaling is critical to the patterning and development of a variety of organ systems, and both ligand-dependent and ligand-independent Hh pathway activation are known to promote tumorigenesis. Recent studies have shown that in tumors promoted by Hh ligands, activation occurs within the stromal microenvironment. Testing whether ligand-driven Hh signaling promotes tumor angiogenesis, we found that Hh antagonism reduced the vascular density of Hh-producing LS180 and SW480 xenografts. In addition, ectopic expression of sonic hedgehog in low-Hh–expressing DLD-1 xenografts increased tumor vascular density, augmented angiogenesis, and was associated with canonical Hh signaling within perivascular tumor stromal cells. To better understand the molecular mechanisms underlying Hh-mediated tumor angiogenesis, we established an Hh-sensitive angiogenesis coculture assay and found that fibroblast cell lines derived from a variety of human tissues were Hh responsive and promoted angiogenesis in vitro through a secreted paracrine signal(s). Affymetrix array analyses of cultured fibroblasts identified VEGF-A, hepatocyte growth factor, and PDGF-C as candidate secreted proangiogenic factors induced by Hh stimulation. Expression studies of xenografts and angiogenesis assays using combinations of Hh and VEGF-A inhibitors showed that it is primarily Hh-induced VEGF-A that promotes angiogenesis in vitro and augments tumor-derived VEGF to promote angiogenesis in vivo.


Clinical Cancer Research | 2012

Antitumor Activity of Targeted and Cytotoxic Agents in Murine Subcutaneous Tumor Models Correlates with Clinical Response

Harvey Wong; Edna F. Choo; Bruno Alicke; Xiao Ding; Hank La; Erin McNamara; Frank-Peter Theil; Jay Tibbitts; Lori Friedman; Cornelis E. C. A. Hop; Stephen E. Gould

Purpose: Immunodeficient mice transplanted with subcutaneous tumors (xenograft or allograft) are widely used as a model of preclinical activity for the discovery and development of anticancer drug candidates. Despite their widespread use, there is a widely held view that these models provide minimal predictive value for discerning clinically active versus inactive agents. To improve the predictive nature of these models, we have carried out a retrospective population pharmacokinetic–pharmacodynamic (PK–PD) analysis of relevant xenograft/allograft efficacy data for eight agents (molecularly targeted and cytotoxic) with known clinical outcome. Experimental Design: PK–PD modeling was carried out to first characterize the relationship between drug concentration and antitumor activity for each agent in dose-ranging xenograft or allograft experiments. Next, simulations of tumor growth inhibition (TGI) in xenografts/allografts at clinically relevant doses and schedules were carried out by replacing the murine pharmacokinetics, which were used to build the PK–PD model with human pharmacokinetics obtained from literature to account for species differences in pharmacokinetics. Results: A significant correlation (r = 0.91, P = 0.0008) was observed between simulated xenograft/allograft TGI driven by human pharmacokinetics and clinical response but not when TGI observed at maximum tolerated doses in mice was correlated with clinical response (r = 0.36, P = 0.34). Conclusions: On the basis of these analyses, agents that led to greater than 60% TGI in preclinical models, at clinically relevant exposures, are more likely to lead to responses in the clinic. A proposed strategy for the use of murine subcutaneous models for compound selection in anticancer drug discovery is discussed. Clin Cancer Res; 18(14); 3846–55. ©2012 AACR.


Clinical Cancer Research | 2011

Pharmacokinetic–Pharmacodynamic Analysis of Vismodegib in Preclinical Models of Mutational and Ligand-Dependent Hedgehog Pathway Activation

Harvey Wong; Bruno Alicke; Kristina West; Patricia Pacheco; Hank La; Tom Januario; Robert L. Yauch; Frederic J. de Sauvage; Stephen E. Gould

Purpose: Vismodegib (GDC-0449) is a potent and selective inhibitor of the Hedgehog (Hh) pathway that shows antitumor activity in preclinical models driven by mutational or ligand-dependent activation of the Hh pathway. We wished to characterize the pharmacokinetic–pharmacodynamic (PK/PD) relationship of vismodegib in both model systems to guide optimal dose and schedule for vismodegib in the clinic. Experimental Design: Preclinical efficacy and PK/PD studies were carried out with vismodegib in a Ptch+/− allograft model of medulloblastoma exhibiting mutational activation of the Hh pathway and patient-derived colorectal cancer (CRC) xenograft models exhibiting ligand-dependent pathway activation. Inhibition of the hedgehog pathway was related to vismodegib levels in plasma and to antitumor efficacy using an integrated population-based PK/PD model. Results: Oral dosing of vismodegib caused tumor regressions in the Ptch+/− allograft model of medulloblastoma at doses ≥25 mg/kg and tumor growth inhibition at doses up to 92 mg/kg dosed twice daily in two ligand-dependent CRC models, D5123, and 1040830. Analysis of Hh pathway activity and PK/PD modeling reveals that vismodegib inhibits Gli1 with a similar IC50 in both the medulloblastoma and D5123 models (0.165 μmol/L ±11.5% and 0.267 μmol/L ±4.83%, respectively). Pathway modulation was linked to efficacy using an integrated PK/PD model revealing a steep relationship where > 50% of the activity of vismodegib is associated with >80% repression of the Hh pathway. Conclusions: These results suggest that even small reductions in vismodegib exposure can lead to large changes in antitumor activity and will help guide proper dose selection for vismodegib in the clinic. Clin Cancer Res; 17(14); 4682–92. ©2011 AACR.


Journal of Biological Chemistry | 2009

X Chromosome-linked Inhibitor of Apoptosis Regulates Cell Death Induction by Proapoptotic Receptor Agonists

Eugene Varfolomeev; Bruno Alicke; J. Michael Elliott; Kerry Zobel; Kristina West; Harvey Wong; Justin Scheer; Avi Ashkenazi; Stephen E. Gould; Wayne J. Fairbrother; Domagoj Vucic

Proapoptotic receptor agonists cause cellular demise through the activation of the extrinsic and intrinsic apoptotic pathways. Inhibitor of apoptosis (IAP) proteins block apoptosis induced by diverse stimuli. Here, we demonstrate that IAP antagonists in combination with Fas ligand (FasL) or the death receptor 5 (DR5) agonist antibody synergistically stimulate death in cancer cells and inhibit tumor growth. Single-agent activity of IAP antagonists relies on tumor necrosis factor-α signaling. By contrast, blockade of tumor necrosis factor-α does not affect the synergistic activity of IAP antagonists with FasL or DR5 agonist antibody. In most cancer cells, proapoptotic receptor agonist-induced cell death depends on amplifying the apoptotic signal via caspase-8-mediated activation of Bid and subsequent activation of the caspase-9-dependent mitochondrial apoptotic pathway. In the investigated cancer cell lines, induction of apoptosis by FasL or DR5 agonist antibody can be inhibited by knockdown of Bid. However, knockdown of X chromosome-linked IAP (XIAP) or antagonism of XIAP allows FasL or DR5 agonist antibody to induce activation of effector caspases efficiently without the need for mitochondrial amplification of the apoptotic signal and thus rescues the effect of Bid knockdown in these cells.


The Journal of Nuclear Medicine | 2009

In Vivo Biodistribution, PET Imaging, and Tumor Accumulation of 86Y- and 111In-Antimindin/RG-1, Engineered Antibody Fragments in LNCaP Tumor–Bearing Nude Mice

Douglas W. Schneider; Tara Heitner; Bruno Alicke; David Light; Kirk Mclean; Noboru Satozawa; Gordon Parry; Jeongsoo Yoo; Jason S. Lewis; Renate Parry

To optimize in vivo tissue uptake kinetics and clearance of engineered monoclonal antibody (mAb) fragments for radiotherapeutic and radiodiagnostic applications, we compared the biodistribution and tumor localization of four 111In- and 86Y-labeled antibody formats, derived from a single antimindin/RG-1 mAb, in a prostate tumor model. The IgG, diabody, single-chain variable domain (scFv), and novel miniantibody formats, composed of the human IgE-CH4 and a modified IgG1 hinge linked to scFv domains, were compared. Methods: Antibodies were first derivatized with the bifunctional chelator CHX-A″-diethylenetriamine pentaacetic acid and then bound to the radiometal to create radiolabeled immunoconjugates. Human LNCaP xenografts were grown in nude mice, and 111In- or 86Y-labeled antibodies were administered intravenously. Tissues were harvested at different times, and the level of antibody deposition was determined by measuring radioactivity. Whole-body small-animal PET of mice receiving 86Y-labeled antibodies was performed at 6 time points and colocalized with simultaneous micro-CT imaging. Results: The biodistributions of 111In and 86Y antibodies were quite similar. The blood, tumor, kidney, and liver tissues contained varying levels of radioactivity. The antibody accumulation in the tumor correlated with molecular size. The IgG steadily increased with time to 24.1 percentage injected dose per gram (%ID/g) at 48 h. The miniantibody accumulated at a similar rate to reach a lower level (14.2 %ID/g) at 48 h but with a higher tumor-to-blood ratio than the IgG. Tumor accumulation of the diabody peaked at 3 h, reaching a much lower level (3.7 %ID/g). A combination of rapid clearance and lower relative affinity of the scFv precluded deposition in the tumor. Small-animal PET results correlated well with the biodistribution results, with similar tumor localization patterns. Conclusion: The larger antibody formats (IgG and miniantibody) gave higher tumor uptake levels than did the smaller formats (diabody and scFv). These larger formats may be more suitable for radioimmunotherapy applications, evidenced by the preclinical efficacy previously shown by a report on the IgG format. The smaller formats were rapidly cleared from circulation, and the diabody, which accumulated in the tumor, may be more suitable for radiodiagnostic applications.


Cancer Research | 2013

PTEN Loss Mitigates the Response of Medulloblastoma to Hedgehog Pathway Inhibition

Ciara Metcalfe; Bruno Alicke; Ailey Crow; Marlea Lamoureux; Gerrit J. P. Dijkgraaf; Franklin Peale; Stephen E. Gould; Frederic J. de Sauvage

Medulloblastoma is a cancer of the cerebellum, for which there is currently no approved targeted therapy. Recent transcriptomics approaches have demonstrated that medulloblastoma is composed of molecularly distinct subgroups, one of which is characterized by activation of the Hedgehog pathway, which in mouse models is sufficient to drive medulloblastoma development. There is thus considerable interest in targeting the Hedgehog pathway for therapeutic benefit in medulloblastoma, particularly given the recent approval of the Hedgehog pathway inhibitor vismodegib for metastatic and locally advanced basal cell carcinoma. Like other molecularly targeted therapies, however, there have been reports of acquired resistance to vismodegib, driven by secondary Hedgehog pathway mutations and potentially by activation of the phosphatidylinositol 3-kinase (PI3K) pathway. Given that acquired resistance to vismodegib may occur as a result of inappropriate PI3K pathway activation, we asked if loss of the PI3K pathway regulator, phosphatase and tensin homologue (Pten), which has been reported to occur in patients within the Hedgehog subgroup, would constitute a mechanism of innate resistance to vismodegib in Hedgehog-driven medulloblastoma. We find that Hedgehog pathway inhibition successfully restrains growth of Pten-deficient medulloblastoma in this mouse model, but does not drive tumor regression, as it does in Pten-wild-type medulloblastoma. Combined inhibition of the Hedgehog and PI3K pathways may lead to superior antitumor activity in PTEN-deficient medulloblastoma in the clinic.


Clinical Cancer Research | 2012

Targeting the PI3K Pathway in the Brain - Efficacy of a PI3K Inhibitor Optimized to Cross the Blood-Brain Barrier

Laurent Salphati; Timothy P. Heffron; Bruno Alicke; Merry Nishimura; Kai H. Barck; Richard A. D. Carano; Jonathan Cheong; Kyle A. Edgar; Joan M. Greve; Samir Kharbanda; Hartmut Koeppen; Shari Lau; Leslie Lee; Jodie Pang; Emile Plise; Jenny L. Pokorny; Hani Bou Reslan; Jann N. Sarkaria; Jeffrey Wallin; Xiaolin Zhang; Stephen E. Gould; Alan G. Olivero; Heidi S. Phillips

Purpose: Glioblastoma (GBM), the most common primary brain tumor in adults, presents a high frequency of alteration in the PI3K pathway. Our objectives were to identify a dual PI3K/mTOR inhibitor optimized to cross the blood–brain barrier (BBB) and characterize its brain penetration, pathway modulation in the brain and efficacy in orthotopic xenograft models of GBM. Experimental Design: Physicochemical properties of PI3K inhibitors were optimized using in silico tools, leading to the identification of GNE-317. This compound was tested in cells overexpressing P-glycoprotein (P-gp) or breast cancer resistance protein (BCRP). Following administration to mice, GNE-317 plasma and brain concentrations were determined, and phosphorylated biomarkers (pAkt, p4EBP1, and pS6) were measured to assess PI3K pathway suppression in the brain. GNE-317 efficacy was evaluated in the U87, GS2, and GBM10 orthotopic models of GBM. Results: GNE-317 was identified as having physicochemical properties predictive of low efflux by P-gp and BCRP. Studies in transfected MDCK cells showed that GNE-317 was not a substrate of either transporter. GNE-317 markedly inhibited the PI3K pathway in mouse brain, causing 40% to 90% suppression of the pAkt and pS6 signals up to 6-hour postdose. GNE-317 was efficacious in the U87, GS2, and GBM10 orthotopic models, achieving tumor growth inhibition of 90% and 50%, and survival benefit, respectively. Conclusions: These results indicated that specific optimization of PI3K inhibitors to cross the BBB led to potent suppression of the PI3K pathway in healthy brain. The efficacy of GNE-317 in 3 intracranial models of GBM suggested that this compound could be effective in the treatment of GBM. Clin Cancer Res; 18(22); 6239–48. ©2012 AACR.

Collaboration


Dive into the Bruno Alicke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge