Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryon S. Donohoe is active.

Publication


Featured researches published by Bryon S. Donohoe.


Biotechnology and Bioengineering | 2008

Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment.

Bryon S. Donohoe; Stephen R. Decker; Melvin P. Tucker; Michael E. Himmel; Todd B. Vinzant

Plant cell walls are composed primarily of cellulose, hemicelluloses, lignins, and pectins. Of these components, lignins exhibit unique chemistry and physiological functions. Although lignins can be used as a product feedstock or as a fuel, lignins are also generally seen as a barrier to efficient enzymatic breakdown of biomass to sugars. Indeed, many pretreatment strategies focus on removing a significant fraction of lignin from biomass to better enable saccharification. In order to better understand the fate of biomass lignins that remain with the solids following dilute acid pretreatment, we undertook a structural investigation to track lignins on and in biomass cell walls. SEM and TEM imaging revealed a range of droplet morphologies that appear on and within cell walls of pretreated biomass; as well as the specific ultrastructural regions that accumulate the droplets. These droplets were shown to contain lignin by FTIR, NMR, antibody labeling, and cytochemical staining. We provide evidence supporting the idea that thermochemical pretreatments reaching temperatures above the range for lignin phase transition cause lignins to coalesce into larger molten bodies that migrate within and out of the cell wall, and can redeposit on the surface of plant cell walls. This decompartmentalization and relocalization of lignins is likely to be at least as important as lignin removal in the quest to improve the digestibility of biomass for sugars and fuels production.


Planta | 2013

Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production

Henri Gerken; Bryon S. Donohoe; Eric P. Knoshaug

Cell walls of microalgae consist of a polysaccharide and glycoprotein matrix providing the cells with a formidable defense against its environment. We characterized enzymes that can digest the cell wall and weaken this defense for the purpose of protoplasting or lipid extraction. A growth inhibition screen demonstrated that chitinase, lysozyme, pectinase, sulfatase, β-glucuronidase, and laminarinase had the broadest effect across the various Chlorella strains tested and also inhibited Nannochloropsis and Nannochloris strains. Chlorella is typically most sensitive to chitinases and lysozymes, both enzymes that degrade polymers containing N-acetylglucosamine. Using a fluorescent DNA stain, we developed rapid methodology to quantify changes in permeability in response to enzyme digestion and found that treatment with lysozyme in conjunction with other enzymes has a drastic effect on cell permeability. Transmission electron microscopy of enzymatically treated Chlorella vulgaris indicates that lysozyme degrades the outer surface of the cell wall and removes hair-like fibers protruding from the surface, which differs from the activity of chitinase. This action on the outer surface of the cell causes visible protuberances on the cell surface and presumably leads to the increased settling rate when cells are treated with lysozyme. We demonstrate radical ultrastructural changes to the cell wall in response to treatment with various enzyme combinations which, in some cases, causes a greater than twofold increase in the thickness of the cell wall. The enzymes characterized in this study should prove useful in the engineering and extraction of oils from microalgae.


Nature | 2014

Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant

Nicholas D. Bonawitz; Jeong Im Kim; Yuki Tobimatsu; Peter N. Ciesielski; Nickolas H. Anderson; Eduardo Ximenes; Junko Maeda; John Ralph; Bryon S. Donohoe; Michael R. Ladisch; Clint Chapple

Lignin is a phenylpropanoid-derived heteropolymer important for the strength and rigidity of the plant secondary cell wall. Genetic disruption of lignin biosynthesis has been proposed as a means to improve forage and bioenergy crops, but frequently results in stunted growth and developmental abnormalities, the mechanisms of which are poorly understood. Here we show that the phenotype of a lignin-deficient Arabidopsis mutant is dependent on the transcriptional co-regulatory complex, Mediator. Disruption of the Mediator complex subunits MED5a (also known as REF4) and MED5b (also known as RFR1) rescues the stunted growth, lignin deficiency and widespread changes in gene expression seen in the phenylpropanoid pathway mutant ref8, without restoring the synthesis of guaiacyl and syringyl lignin subunits. Cell walls of rescued med5a/5b ref8 plants instead contain a novel lignin consisting almost exclusively of p-hydroxyphenyl lignin subunits, and moreover exhibit substantially facilitated polysaccharide saccharification. These results demonstrate that guaiacyl and syringyl lignin subunits are largely dispensable for normal growth and development, implicate Mediator in an active transcriptional process responsible for dwarfing and inhibition of lignin biosynthesis, and suggest that the transcription machinery and signalling pathways responding to cell wall defects may be important targets to include in efforts to reduce biomass recalcitrance.


Science | 2013

Revealing nature's cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA.

Roman Brunecky; Markus Alahuhta; Qi Xu; Bryon S. Donohoe; Michael F. Crowley; Irina Kataeva; Sung-Jae Yang; Michael G. Resch; Michael W. W. Adams; Vladimir V. Lunin; Michael E. Himmel; Yannick J. Bomble

An Enzyme Drill Cellulase enzymes degrade the cell walls of plants by breaking down cellulose into its constituent sugar fragments and thus have attracted interest for biofuels production. Using transmission electron microscopy Brunecky et al. (p. 1513; see the Perspective by Berlin) discovered that an especially active cellulase, CelA, from Caldicellulosiruptor bescii bacteria does not move along the surface of the substrate, but drills into the cellulose to form cavities. Electron microscopy reveals that a cellulose-degrading enzyme operates by drilling down, as well as by roaming the surface. [Also see Perspective by Berlin] Most fungi and bacteria degrade plant cell walls by secreting free, complementary enzymes that hydrolyze cellulose; however, some bacteria use large enzymatic assemblies called cellulosomes, which recruit complementary enzymes to protein scaffolds. The thermophilic bacterium Caldicellulosiruptor bescii uses an intermediate strategy, secreting many free cellulases that contain multiple catalytic domains. One of these, CelA, comprises a glycoside hydrolase family 9 and a family 48 catalytic domain, as well as three type III cellulose-binding modules. In the saccharification of a common cellulose standard, Avicel, CelA outperforms mixtures of commercially relevant exo‐ and endoglucanases. From transmission electron microscopy studies of cellulose after incubation with CelA, we report morphological features that suggest that CelA not only exploits the common surface ablation mechanism driven by general cellulase processivity, but also excavates extensive cavities into the surface of the substrate. These results suggest that nature’s repertoire of cellulose digestion paradigms remain only partially discovered and understood.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi

Bryon S. Donohoe; Byung-Ho Kang; L. Andrew Staehelin

Coat protein I (COPI) vesicles arise from Golgi cisternae and mediate the recycling of proteins from the Golgi back to the endoplasmic reticulum (ER) and the transport of Golgi resident proteins between cisternae. In vitro studies have produced evidence for two distinct types of COPI vesicles, but the in vivo sites of operation of these vesicles remain to be established. We have used a combination of electron tomography and immunolabeling techniques to examine Golgi stacks and associated vesicles in the cells of the scale-producing alga Scherffelia dubia and Arabidopsis preserved by high-pressure freezing/freeze-substitution methods. Five structurally distinct types of vesicles were distinguished. In Arabidopsis, COPI and COPII vesicle coat proteins as well as vesicle cargo molecules (mannosidase I and sialyltransferase–yellow fluorescent protein) were identified by immunogold labeling. In both organisms, the COPI-type vesicles were further characterized by a combination of six structural criteria: coat architecture, coat thickness, membrane structure, cargo staining, cisternal origin, and spatial distribution. Using this multiparameter structural approach, we can distinguish two types of COPI vesicles, COPIa and COPIb. COPIa vesicles bud exclusively from cis cisternae and occupy the space between cis cisternae and ER export sites, whereas the COPIb vesicles bud exclusively from medial- and trans-Golgi cisternae and are confined to the space around these latter cisternae. We conclude that COPIa vesicle-mediated recycling to the ER occurs only from cis cisternae, that retrograde transport of Golgi resident proteins by COPIb vesicles is limited to medial and trans cisternae, and that diffusion of periGolgi vesicles is restricted.


Bioresource Technology | 2011

Comparative material balances around pretreatment technologies for the conversion of switchgrass to soluble sugars

Rebecca J. Garlock; Venkatesh Balan; Bruce E. Dale; V. Ramesh Pallapolu; Yoon Y. Lee; Youngmi Kim; Nathan S. Mosier; Michael R. Ladisch; Mark T. Holtzapple; Matthew Falls; Rocio Sierra-Ramirez; Jian Shi; Mirvat A. Ebrik; Tim Redmond; Bin Yang; Charles E. Wyman; Bryon S. Donohoe; Todd B. Vinzant; Richard T. Elander; Bonnie Hames; Steve Thomas; Ryan E. Warner

For this project, six chemical pretreatments were compared for the Consortium for Applied Fundamentals and Innovation (CAFI): ammonia fiber expansion (AFEX), dilute sulfuric acid (DA), lime, liquid hot water (LHW), soaking in aqueous ammonia (SAA), and sulfur dioxide (SO(2)). For each pretreatment, a material balance was analyzed around the pretreatment, optional post-washing step, and enzymatic hydrolysis of Dacotah switchgrass. All pretreatments+enzymatic hydrolysis solubilized over two-thirds of the available glucan and xylan. Lime, post-washed LHW, and SO(2) achieved >83% total glucose yields. Lime, post-washed AFEX, and DA achieved >83% total xylose yields. Alkaline pretreatments, except AFEX, solubilized the most lignin and a portion of the xylan as xylo-oligomers. As pretreatment pH decreased, total solubilized xylan and released monomeric xylose increased. Low temperature-long time or high temperature-short time pretreatments are necessary for high glucose release from late-harvest Dacotah switchgrass but high temperatures may cause xylose degradation.


Energy and Environmental Science | 2013

Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction

Michael G. Resch; Bryon S. Donohoe; John O. Baker; Stephen R. Decker; Edward A. Bayer; Gregg T. Beckham; Michael E. Himmel

Nature has evolved multiple enzymatic strategies for the degradation of plant cell wall polysaccharides, which are central to carbon flux in the biosphere and an integral part of renewable biofuels production. Many biomass-degrading organisms secrete synergistic cocktails of individual enzymes with one or several catalytic domains per enzyme, whereas a few bacteria synthesize large multi-enzyme complexes, termed cellulosomes, which contain multiple catalytic units per complex. Both enzyme systems employ similar catalytic chemistries; however, the physical mechanisms by which these enzyme systems degrade polysaccharides are still unclear. Here we examine a prominent example of each type, namely a free-enzyme cocktail expressed by the fungus Hypocrea jecorina and a cellulosome preparation secreted from the anaerobic bacterium Clostridium thermocellum. We observe striking differences in cellulose saccharification exhibited by these systems at the same protein loading. Free enzymes are more active on pretreated biomass and in contrast cellulosomes are much more active on purified cellulose. When combined, these systems display dramatic synergistic enzyme activity on cellulose. To gain further insights, we imaged free enzyme- and cellulosome-digested cellulose and biomass by transmission electron microscopy, which revealed evidence for different mechanisms of cellulose deconstruction by free enzymes and cellulosomes. Specifically, the free enzymes employ an ablative, fibril-sharpening mechanism, whereas cellulosomes physically separate individual cellulose microfibrils from larger particles resulting in enhanced access to cellulose surfaces. Interestingly, when the two enzyme systems are combined, we observe changes to the substrate that suggests mechanisms of synergistic deconstruction. Insight into the different mechanisms underlying these two polysaccharide deconstruction paradigms will eventually enable new strategies for enzyme engineering to overcome biomass recalcitrance.


Bioresource Technology | 2011

Comparative study on enzymatic digestibility of switchgrass varieties and harvests processed by leading pretreatment technologies

Youngmi Kim; Nathan S. Mosier; Michael R. Ladisch; V. Ramesh Pallapolu; Yoon Y. Lee; Rebecca J. Garlock; Venkatesh Balan; Bruce E. Dale; Bryon S. Donohoe; Todd B. Vinzant; Richard T. Elander; Matthew Falls; Rocio Sierra; Mark T. Holtzapple; Jian Shi; Mirvat A. Ebrik; Tim Redmond; Bin Yang; Charles E. Wyman; Ryan E. Warner

Feedstock quality of switchgrass for biofuel production depends on many factors such as morphological types, geographic origins, maturity, environmental and cultivation parameters, and storage. We report variability in compositions and enzymatic digestion efficiencies for three cultivars of switchgrass (Alamo, Dacotah and Shawnee), grown and harvested at different locations and seasons. Saccharification yields of switchgrass processed by different pretreatment technologies (AFEX, dilute sulfuric acid, liquid hot water, lime, and soaking in aqueous ammonia) are compared in regards to switchgrass genotypes and harvest seasons. Despite its higher cellulose content per dry mass, Dacotah switchgrass harvested after wintering consistently gave a lower saccharification yield than the other two varieties harvested in the fall. The recalcitrance of upland cultivars and over-wintered switchgrass may require more severe pretreatment conditions. We discuss the key features of different pretreatment technologies and differences in switchgrass cultivars and harvest seasons on hydrolysis performance for the applied pretreatment methods.


PLOS ONE | 2012

The Metagenome of an Anaerobic Microbial Community Decomposing Poplar Wood Chips

Daniel van der Lelie; Safiyh Taghavi; Sean M. McCorkle; Luen Luen Li; Stephanie Malfatti; Denise Monteleone; Bryon S. Donohoe; Shi You Ding; William S. Adney; Michael E. Himmel; Susannah G. Tringe

This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic ‘secretomes’ that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.


Green Chemistry | 2014

Real-time monitoring of the deactivation of HZSM-5 during upgrading of pine pyrolysis vapors.

Calvin Mukarakate; Xiaodong Zhang; Alexander R. Stanton; David J. Robichaud; Peter N. Ciesielski; Kara Malhotra; Bryon S. Donohoe; Erica Gjersing; Robert J. Evans; David S. Heroux; Ryan M. Richards; Kristiina Iisa; Mark R. Nimlos

The conversion of pine pyrolysis vapors over fixed beds of HZSM-5 catalyst was studied as a function of deactivation of the catalyst, presumably by coking. Small laboratory reactors were used in this study in which the products were identified using a molecular beam mass spectrometer (MBMS) and gas chromatography mass spectrometry (GCMS). In all of these experiments, real-time measurements of the products formed were conducted as the catalyst aged and deactivated during upgrading. The results from these experiments showed the following: (1) Fresh catalyst produces primarily aromatic hydrocarbons and olefins with no detectable oxygen-containing species. (2) After pyrolysis of roughly the same weight of biomass as weight of catalyst, oxygenated products begin to appear in the product stream. This suite of oxygen containing products appears different from the products formed when the catalyst is fresh and when the catalyst is completely deactivated. In particular, phenol and cresols are measured while upgrading pine, cellulose and lignin pyrolysis vapors, suggesting that these products are intermediates or side products formed during upgrading. (3) After the addition of more pyrolysis vapors, the product stream consists of primary vapors from pine pyrolysis. Catalyst samples collected at various points during deactivation were analyzed using a variety of tools. The results show that carbon build-up is correlated with catalyst deactivation, suggesting that deactivation is due to coking. Further, studies of nitrogen adsorption on the used catalyst suggest that coking initially occurs on the outside of the catalyst, leaving the micropores largely intact. From a practical point of view, it appears that based upon this study and others in the literature, the amount of oxygen in the upgraded products can be related to the level of deactivation of the HZSM-5 catalyst, which can be determined by how much pyrolysis vapor is run over the catalyst.

Collaboration


Dive into the Bryon S. Donohoe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Todd B. Vinzant

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark R. Nimlos

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ashutosh Mittal

State University of New York at Purchase

View shared research outputs
Top Co-Authors

Avatar

Melvin P. Tucker

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael G. Resch

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregg T. Beckham

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yannick J. Bomble

National Renewable Energy Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge