Byoung-June Kim
Samsung
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Byoung-June Kim.
Journal of The Society for Information Display | 2007
Kunal Girotra; Yong-Mo Choi; Byoung-June Kim; Young-Rok Song; Beom-Rak Choi; Sung-Hoon Yang; Shi-Yul Kim; Soon-Kwon Lim
— A 14.1-in. AMOLED display using nanocrystalline silicon (nc-Si) TFTs has been developed. Nanocrystalline silicon was deposited using conventional 13.56-MHz plasma-enhanced chemical vapor deposition (PECVD). Detailed thin-film characterization of nc-Si films was followed by development of nc-Si TFTs, which demonstrate a field-effect mobility of about 0.6–1.0 cm2/V-sec. The nc-Si TFTs show no significant shift in threshold voltage when over 700 hours of constant current stress is applied, indicating a stable TFT backplane. The nc-Si TFTs were successfully integrated into a 14.1-in. AMOLED display. The display shows no significant current decrease in the driving TFT of the 2T-1cap circuit because the TFTs are highly stable. In addition to the improved lifetime of AMOLED displays, the development of nc-Si TFTs using a conventional 13.56-MHz PECVD system offers considerable cost advantages over other laser and non-laser polysilicon-TFT technologies for large-sized AMOLEDs.
SID Symposium Digest of Technical Papers | 2006
Kunal Girotra; Jun-Hyung Souk; Kyuha Chung; Soon-Kwon Lim; Shi-Yul Kim; Byoung-June Kim; Sung-Hoon Yang; Beohm-Rock Choi; Joon-Chul Goh; Young-Rok Song; Yong-Mo Choi
We have developed a 14.1 inch AMOLED display using microcrystalline silicon (mc-Si) TFTs. Microcrystalline silicon was deposited using conventional 13.56MHz Plasma Enhanced Chemical Vapor Deposition (PECVD). Detailed thin film characterization of mc-Si films was followed by development of mc-Si TFTs which show a field effect mobility of around 0.7∼1.0cm2/V.s. The mc-Si TFTs show no significant shift in threshold voltage when applied with a long time constant current stress, indicating a stable TFT backplane. The mc-Si TFTs were successfully integrated in a 14.1 inch AMOLED display. The display shows no significant current decrease in the driving TFT of the 2T circuit, even after long time of lifetime tests. Along with improved lifetime for AMOLED display, the development of mc-Si TFTs using conventional 13.56 MHz PECVD system offers significant cost advantages over other laser or non-laser polysilicon TFT technologies for AMOLED.
RSC Advances | 2015
JungYup Yang; Dongho Lee; Kwang-Soo Huh; Seung-jae Jung; Ji-won Lee; HeeChan Lee; Dohyun Baek; Byoung-June Kim; Dong Seop Kim; Junggyu Nam; Gee-Yeong Kim; William Jo
We have investigated the sulfurization process in a Cu(In,Ga)(Se,S)2 (CIGSS) absorber layer fabricated by a two-step sputter and selenization/sulfurization method in order to make an ideal double-graded band-gap profile and increase the open circuit voltage (Voc). The sulfurization process was controlled by temperature from 570 °C to 590 °C without changing H2S gas concentration and reaction time. Although the energy band-gap of the CIGSS absorber layer was increased with increasing sulfurization temperature, the Voc of the completed CIGSS device fabricated at 590 °C sulfurization temperature did not increase. In order to investigate this abnormal Voc behavior, the CIGSS absorber layer was measured by local electrical characterization utilizing Kelvin probe force microscopy, especially in terms of grain boundary potential and surface work function. Consequently, the abnormal Voc behavior was attributed to the degradation of grain boundary passivation by the strong sulfurization process. The optimum sulfurization temperature plays an important role in enhancement of grain boundary passivation. It was also verified that the Voc degradation in the CIGSS solar cell fabricated by the two-step method is more influenced by the grain boundary passivation quality in comparison with the slight non-uniformity of material composition among grains.
Applied Physics Letters | 2015
Dongho Lee; Jaehan Lee; Sung Heo; Jong Bong Park; Young Su Kim; Chan B. Mo; Kwang-Soo Huh; JungYup Yang; Junggyu Nam; Dohyun Baek; Sungchan Park; Byoung-June Kim; Dong Seop Kim; Yoonmook Kang
We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se) ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer.
Applied Physics Letters | 2000
Jaehee Cho; Seong-Ho Cho; Byoung-June Kim; Su-hee Chae; C. Sone; Okhyun Nam; J. W. Lee; Y. Park; Tae Il Kim
An electrically injected InGaN/GaN-based distributed Bragg reflector (DBR) laser was demonstrated. Surface grating was formed on both sides of ridge waveguide by chemically assisted ion beam etching technique. The observed threshold current was 375 mA with threshold voltage of 15.1 V for 500×3 μm2 devices. The emission of the DBR laser occurred in a single longitudinal mode at a wavelength of 401.3 nm. The ratio of sidemode suppression was found to be more than 13 dB until a current injection of 1 A.
Archive | 2008
Sung-Ryul Kim; Sung-Hoon Yang; Byoung-June Kim; Czang-Ho Lee; Jae-Ho Choi; Hwa-Yeul Oh; Yong-Mo Choi
Archive | 2010
Sung-Hoon Yang; Kunal Girotra; Byoung-June Kim
Progress in Photovoltaics | 2014
Czang-Ho Lee; Byoung-June Kim; Myung-Hun Shin
Solar Energy Materials and Solar Cells | 2011
Czang-Ho Lee; Myung-Hun Shin; Mi-Hwa Lim; Jun-Yong Seo; Jung-eun Lee; Hee-Yong Lee; Byoung-June Kim; Dong-uk Choi
Archive | 2007
Hwa-Yeul Oh; Byoung-June Kim; Sung-Hoon Yang; Jae-Ho Choi; Yong-Mo Choi; Girotra Kunal