Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C.A. Coverdale is active.

Publication


Featured researches published by C.A. Coverdale.


Physics of Plasmas | 2005

Pulsed-power-driven high energy density physics and inertial confinement fusion research

M. Keith Matzen; M. A. Sweeney; R. G. Adams; J. R. Asay; J. E. Bailey; Guy R. Bennett; D.E. Bliss; Douglas D. Bloomquist; T. A. Brunner; Robert B. Campbell; Gordon Andrew Chandler; C.A. Coverdale; M. E. Cuneo; Jean-Paul Davis; C. Deeney; Michael P. Desjarlais; G. L. Donovan; Christopher Joseph Garasi; Thomas A. Haill; C. A. Hall; D.L. Hanson; M. J. Hurst; B. Jones; M. D. Knudson; R. J. Leeper; R.W. Lemke; M.G. Mazarakis; D. H. McDaniel; T.A. Mehlhorn; T. J. Nash

The Z accelerator [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] at Sandia National Laboratories delivers ∼20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar). In a z-pinch configuration, the magnetic pressure (the Lorentz force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ∕cm3 and temperatures >1keV at 0.1% of solid density. These plasmas produce x-ray energies approaching 2MJ at powers >200TW for inertial confinement fusion (ICF) and high energy density physics (HEDP) experiments. In an alternative configuration, the large magnetic pressure directly drives isentropic compression experiments to pressures >3Mbar and accelerates flyer plates to >30km∕s for equation of state ...


Physics of Plasmas | 2007

Neutron production and implosion characteristics of a deuterium gas-puff Z pinch

C.A. Coverdale; C. Deeney; A.L. Velikovich; R. W. Clark; Y. K. Chong; Jack Davis; J. P. Chittenden; C. L. Ruiz; G. W. Cooper; A.J. Nelson; J. Franklin; P. D. LePell; J. P. Apruzese; J.S. Levine; J. Banister; N. Qi

Experiments on the Z accelerator with deuterium gas puff implosions have produced up to 3.9×1013(±20%) neutrons at 2.34 MeV (±0.10MeV). Experimentally, the mechanism for generating these neutrons has not been definitively identified through isotropy measurements, but activation diagnostics suggest multiple mechanisms may be responsible. One-, two-, and three-dimensional magnetohydrodynamic (MHD) calculations have indicated that thermonuclear outputs from Z could be expected to be in the (0.3–1.0)×1014 range. X-ray diagnostics of plasma conditions, fielded to look at dopant materials in the deuterium, have shown that the stagnated deuterium plasma achieved electron temperatures of 2.2keV and ion densities of 2×1020cm−3, in agreement with the MHD calculations.


Physics of Plasmas | 2007

Z-pinch plasma neutron sources

A.L. Velikovich; R. W. Clark; Jack Davis; Y. K. Chong; C. Deeney; C.A. Coverdale; C. L. Ruiz; G. W. Cooper; A.J. Nelson; J. Franklin; Leonid Rudakov

A deuterium gas-puff load imploded by a multi-MA current driver from a large initial diameter could be a powerful source of fusion neutrons, a plasma neutron source (PNS). Unlike the beam-target neutrons produced in Z-pinch plasmas in the 1950s and deuterium-fiber experiments in the 1980s, the neutrons generated in deuterium gas-puffs with current levels achieved in recent experiments on the Z facility at Sandia National Laboratories could contain a substantial fraction of thermonuclear origin. For recent deuterium gas-puff shots on Z, our analytic estimates and one- and two-dimensional simulations predict thermal neutron yields ∼3×1013, in fair agreement with the yields recently measured on Z [C. A. Coverdale et al., Phys. Plasmas (to be published)]. It is demonstrated that the hypothesis of a beam-target origin of the observed fusion neutrons implies a very high Z-pinch-driver-to-fast-ions energy transfer efficiency, 5 to 10%, which would make a multi-MA deuterium Z-pinch the most efficient light-ion ac...


Physics of Plasmas | 1999

Titanium K-shell x-ray production from high velocity wire array implosions on the 20-MA Z accelerator

C. Deeney; C.A. Coverdale; M.R. Douglas; T. J. Nash; Rick B. Spielman; K.W. Struve; K. G. Whitney; J.W. Thornhill; J. P. Apruzese; R. W. Clark; J. Davis; F. N. Beg; J. Ruiz-Camacho

The advent of the 20-MA Z accelerator [R.B. Spielman, C. Deeney, G.A. Chandler, et al., Phys. Plasmas 5, 2105, (1997)] has enabled implosions of large diameter, high-wire-number arrays of titanium to begin testing Z-pinch K-shell scaling theories. The 2-cm long titanium arrays, which were mounted on a 40-mm diameter, produced between 75{+-}15 to 125{+-}20 kJ of K-shell x-rays. Mass scans indicate that, as predicted, higher velocity implosions in the series produced higher x-ray yields. Spectroscopic analyses indicate that these high velocity implosions achieved peak electron temperatures from 2.7{+-}0.1 to 3.2{+-}0.2 keV and obtained a K-shell emission mass participation of up to 12%.


Physics of Plasmas | 2001

Efficient argon K-shell radiation from a Z pinch at currents >15 MA

H. Sze; P. L. Coleman; J. Banister; B. H. Failor; A. Fisher; J.S. Levine; Y. Song; E. M. Waisman; J. P. Apruzese; R. W. Clark; J. Davis; D. Mosher; J.W. Thornhill; A.L. Velikovich; B.V. Weber; C.A. Coverdale; C. Deeney; T. Gilliland; J. McGurn; Rick B. Spielman; K.W. Struve; W. A. Stygar; D. Bell

The first observations of gaseous load implosions with over 15 MA in >110 ns on the Z generator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)] are reported. Starting from a diameter of over 8 cm, an argon double-shell Z pinch imploded to under 0.5 cm K-shell emission diameter. With a load mass of 0.8 mg/cm, K-shell x-ray output reached 274±24 kJ in a 15 TW peak power, 12 ns pulse. This record-high yield is consistent with the current-squared scaling predicted for the “efficient” emission regime.


Physics of Plasmas | 2005

Measurements of the mass distribution and instability growth for wire-array Z-pinch implosions driven by 14–20 MA

Daniel Brian Sinars; M. E. Cuneo; B. Jones; C.A. Coverdale; T. J. Nash; M.G. Mazarakis; John L. Porter; C. Deeney; David Franklin Wenger; R. G. Adams; E. P. Yu; D.E. Bliss; G. S. Sarkisov

The mass distribution and axial instability growth of wire-array Z-pinch implosions driven by 14–20 MA has been studied using high-resolution, monochromatic x-ray backlighting diagnostics. A delayed implosion is consistently observed in which persistent, dense wire cores continuously ablate plasma until they dissipate and the main implosion begins. In arrays with small interwire gaps, azimuthally correlated axial instabilities appear during the wire ablation stage and subsequently seed the early growth of magneto-Rayleigh–Taylor instabilities. The instabilities create a distributed implosion front with trailing mass that may limit the peak radiation power.


Physics of Plasmas | 2007

Deuterium gas-puff Z-pinch implosions on the Z acceleratora)

C.A. Coverdale; C. Deeney; A. L. Velikovich; J. Davis; R. W. Clark; Y. K. Chong; J. P. Chittenden; S. Chantrenne; C. L. Ruiz; G. W. Cooper; A.J. Nelson; J. Franklin; P. D. LePell; J. P. Apruzese; J.S. Levine; J.W. Banister

Experiments on the Z accelerator with deuterium gas-puff implosions have produced up to 3.7×1013 (±20%) neutrons at 2.34MeV (±0.10MeV). Although the mechanism for generating these neutrons was not definitively identified, this neutron output is 100 times more than previously observed from neutron-producing experiments at Z. Dopant gases in the deuterium (argon and chlorine) were used to study implosion characteristics and stagnated plasma conditions through x-ray yield measurements and spectroscopy. Magnetohydrodynamic (MHD) calculations have suggested that the dopants improved the neutron output through better plasma compression, which has been studied in experiments increasing the dopant fraction. Scaling these experiments, and additional MHD calculations, suggest that ∼5×1014 deuterium-deuterium (DD) neutrons could be generated at the 26-MA refurbished Z facility.


Physics of Plasmas | 2009

Absolute x-ray yields from laser-irradiated germanium-doped low-density aerogels

K. B. Fournier; Joe H. Satcher; M. J. May; J. F. Poco; C. Sorce; Jeffrey D. Colvin; Stephanie B. Hansen; S. A. MacLaren; S. Moon; J. F. Davis; F. Girard; Bruno Villette; M. Primout; D. Babonneau; C.A. Coverdale; D. E. Beutler

The x-ray yields from laser-irradiated germanium-doped ultra-low-density aerogel plasmas have been measured in the energy range from sub-keV to ≈15 keV at the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The targets’ x-ray yields have been studied for variation in target size, aerogel density, laser pulse length, and laser intensity. For targets that result in plasmas with electron densities in the range of ≈10% of the critical density for 3ω light, one can expect 10–11 J/sr of x rays with energies above 9 keV, and 600–800 J/sr for energies below 3.5 keV. In addition to the x-ray spectral yields, the x-ray temporal waveforms have been measured and it is observed that the emitted x rays generally follow the delivered laser power, with late-time enhancements of emitted x-ray power correlated with hydrodynamic compression of the hot plasma. Further, the laser energy reflected from the target by plasma instabilities is found to be 2%–7% of the incident energy for indiv...


international conference on plasma science | 2006

Radiation properties and implosion dynamics of planar and cylindrical wire arrays, asymmetric and symmetric, uniform and combined X-pinches on the UNR 1-MA zebra generator

V. L. Kantsyrev; A.S. Safronova; Dmitry A. Fedin; V. Ivanov; A.A. Esaulov; V. Nalajala; I. Shrestha; S. Pokala; K. M. Williamson; N. Ouart; M.F. Yilmaz; P.J. Laca; Thomas E. Cowan; Leonid Rudakov; B. Jones; C.A. Coverdale; C. Deeney; Paul David LePell; A.L. Velikovich; A. S. Chuvatin

In the following experiments, we studied implosions of different wire arrays and X-pinches produced on the 1-MA Zebra generator at the University of Nevada, Reno. Diagnostics included both spatially-resolved and time-gated X-ray imaging and spectroscopy, and laser probing. In particular, we compared planar wire arrays, to which little energy could be coupled via the conventional magnetic-to-kinetic conversion mechanism, to cylindrical wire arrays of comparable dimensions and mass. The planar wire arrays were shown to radiate much higher peak power and more energy in subkiloelectronvolt and kiloelectronvolt spectral ranges than cylindrical wire arrays. We tested the theoretical conjecture that enhanced resistivity due to the small-scale inhomogeneity of wire-array plasmas has a major effect on dynamics, energy coupling and radiation performance of wire-array Z-pinches. The study of Al, Alumel, and W cylindrical wire arrays shows a wide variety of characteristic behaviors in plasma implosions discussed hereinafter. Additional experimental results for symmetric and asymmetric, uniform stainless steel, Cu, Mo, combined Al/Mo, Mo/Al, Al/W, W/Al, and Mo/W X-pinches are also presented. New data for the total radiation yield are obtained. The planar structures of X-pinch plasma and the corresponding electron beam was observed for most of X-pinches. The generation of hot spots along original wires positions-cooler than those from the cross-wire region-and arc structures with hot spots between wires were found for X-pinches composed from Al, Cu, and W wires.


Physics of Plasmas | 2002

The physics of radiation transport in dense plasmas

J. P. Apruzese; J. Davis; K. G. Whitney; J.W. Thornhill; Paul C. Kepple; R. W. Clark; C. Deeney; C.A. Coverdale; T. W. L. Sanford

Radiation transport redistributes energy within a medium through the emission and reabsorption of photons. These processes also have a pronounced effect on the spectrum of radiation that escapes the medium. As the deliverable energies of plasma drivers such as lasers and pulsed-power generators steadily increase, denser and/or more massive plasmas can be created. Such plasmas are more absorptive to their own emitted radiation, with portions of the line spectrum frequently being highly opaque. Thus, radiation transport becomes more important, along with the need to consider its impact on the design of experiments and their diagnosis. This tutorial paper covers the basic theory and equations describing radiation transport, its physical effects, experimental examples of transport phenomena, and current challenges and issues. Among the specific topics discussed are requirements for local thermodynamic equilibrium (LTE), conditions for diffusion and the use of the diffusion approximation, the formation of emis...

Collaboration


Dive into the C.A. Coverdale's collaboration.

Top Co-Authors

Avatar

C. Deeney

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

B. Jones

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

J. P. Apruzese

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

J.W. Thornhill

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Davis

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. L. Giuliani

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

David J. Ampleford

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

K. G. Whitney

University of California

View shared research outputs
Top Co-Authors

Avatar

M. E. Cuneo

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

A.L. Velikovich

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge