Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Deeney is active.

Publication


Featured researches published by C. Deeney.


Physics of Plasmas | 1998

Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ

Rick B. Spielman; C. Deeney; Gordon Andrew Chandler; M.R. Douglas; D. L. Fehl; M. K. Matzen; D. H. McDaniel; T. J. Nash; John L. Porter; T. W. L. Sanford; J. F. Seamen; W. A. Stygar; K.W. Struve; Stephen P. Breeze; J. McGurn; J. Torres; D. M. Zagar; T. Gilliland; D. Jobe; J. L. McKenney; R. C. Mock; M. Vargas; T. Wagoner; D.L. Peterson

Here Z, a 60 TW/5 MJ electrical accelerator located at Sandia National Laboratories, has been used to implode tungsten wire-array Z pinches. These arrays consisted of large numbers of tungsten wires (120–300) with wire diameters of 7.5 to 15 μm placed in a symmetric cylindrical array. The experiments used array diameters ranging from 1.75 to 4 cm and lengths from 1 to 2 cm. A 2 cm long, 4 cm diam tungsten array consisting of 240, 7.5 μm diam wires (4.1 mg mass) achieved an x-ray power of ∼200 TW and an x-ray energy of nearly 2 MJ. Spectral data suggest an optically thick, Planckian-like radiator below 1000 eV. One surprising experimental result was the observation that the total radiated x-ray energies and x-ray powers were nearly independent of pinch length. These data are compared with two-dimensional radiation magnetohydrodynamic code calculations.


Journal of Applied Physics | 2003

Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique

M. D. Knudson; R.W. Lemke; Dennis Brewster Hayes; C. A. Hall; C. Deeney; J. R. Asay

Hugoniot measurements were performed on aluminum (6061-T6) in the stress range of 100–500 GPa (1–5 Mbar) using a magnetically accelerated flyer plate technique. This method of flyer plate launch utilizes the high currents, and resulting magnetic fields produced at the Sandia Z Accelerator to accelerate macroscopic aluminum flyer plates (approximately 12×25 mm in lateral dimension and ∼300 μm in thickness) to velocities in excess of 20 km/s. This technique was used to perform plate-impact shock-wave experiments on aluminum to determine the high-stress equation of state (EOS). Using a near-symmetric impact method, Hugoniot measurements were obtained in the stress range of 100–500 GPa. The results of these experiments are in excellent agreement with previously reported Hugoniot measurements of aluminum in this stress range. The agreement at lower stress, where highly accurate gas gun data exist, establishes the magnetically accelerated flyer plate technique as a suitable method for generating EOS data. Furth...


Physics of Plasmas | 1998

Characterization of energy flow and instability development in two-dimensional simulations of hollow z pinches

D.L. Peterson; R.L. Bowers; K. D. McLenithan; C. Deeney; Gordon Andrew Chandler; Rick B. Spielman; M. K. Matzen; N. F. Roderick

A two-dimensional (2-D) Eulerian Radiation-Magnetohydrodynamic (RMHD) code has been used to simulate imploding z pinches for three experiments fielded on the Los Alamos Pegasus II capacitor bank [J. C. Cochrane et al., Dense Z-Pinches, Third International Conference, London, United Kingdom 1993 (American Institute of Physics, New York, 1994), p. 381] and the Sandia Saturn accelerator [R. B. Spielman et al., Dense Z-Pinches, Second International Conference, Laguna Beach, 1989 (American Institute of Physics, New York, 1989), p. 3] and Z accelerator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)]. These simulations match the experimental results closely and illustrate how the code results may be used to track the flow of energy in the simulation and account for the amount of total radiated energy. The differences between the calculated radiated energy and power in 2-D simulations and those from zero-dimensional (0-D) and one-dimensional (1-D) Lagrangian simulations (which typically underpredict the tot...


Review of Scientific Instruments | 1999

FILTERED X-RAY DIODE DIAGNOSTICS FIELDED ON THE Z ACCELERATOR FOR SOURCE POWER MEASUREMENTS

Gordon Andrew Chandler; C. Deeney; M. E. Cuneo; D. L. Fehl; J. McGurn; Rick B. Spielman; J. Torres; J. L. McKenney; J. Mills; K.W. Struve

Filtered x-ray diode (XRD) detectors are used as primary radiation flux diagnostics on Sandia’s Z accelerator, which generates nominally a 200-TW, 2-MJ, x-ray pulse. Given such flux levels and XRD sensitivities the detectors are being fielded 23 m from the source. The standard diagnostic setup and sensitivities are discussed. Vitreous carbon photocathodes are being used to reduce the effect of hydrocarbon contamination present in the Z-machine vacuum system. Nevertheless pre- and postcalibration data taken indicate spectrally dependent changes in the sensitivity of these detectors by up to factors of 2 or 3.


Physics of Plasmas | 2005

Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator

Jean-Paul Davis; C. Deeney; M. D. Knudson; R.W. Lemke; T.D. Pointon; D.E. Bliss

A technique has previously been developed on the Z accelerator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)] to generate ramped compression waves in condensed matter for equation-of-state studies [C. A. Hall, J. R. Asay, M. D. Knudson, W. A. Stygar, R. B. Spielman, T. D. Pointon, D. B. Reisman, A. Toor, and R. C. Cauble, Rev. Sci. Instrum. 72, 3587 (2001)] by using the Lorentz force to push on solid electrodes rather than to drive a Z pinch. This technique has now been extended to multimegabar pressures by shaping the current pulse on Z to significantly increase the sample thickness through which the compression wave can propagate without forming a shock. Shockless, free-surface velocity measurements from multiple sample thicknesses on a single experiment can be analyzed using a backward integration technique [D. B. Hayes, C. A. Hall, J. R. Asay, and M. D. Knudson, J. Appl. Phys. 94, 2331 (2003)] to extract an isentropic loading curve. At very high pressures, the accuracy of this method is dominat...


Physics of Plasmas | 2007

Neutron production and implosion characteristics of a deuterium gas-puff Z pinch

C.A. Coverdale; C. Deeney; A.L. Velikovich; R. W. Clark; Y. K. Chong; Jack Davis; J. P. Chittenden; C. L. Ruiz; G. W. Cooper; A.J. Nelson; J. Franklin; P. D. LePell; J. P. Apruzese; J.S. Levine; J. Banister; N. Qi

Experiments on the Z accelerator with deuterium gas puff implosions have produced up to 3.9×1013(±20%) neutrons at 2.34 MeV (±0.10MeV). Experimentally, the mechanism for generating these neutrons has not been definitively identified through isotropy measurements, but activation diagnostics suggest multiple mechanisms may be responsible. One-, two-, and three-dimensional magnetohydrodynamic (MHD) calculations have indicated that thermonuclear outputs from Z could be expected to be in the (0.3–1.0)×1014 range. X-ray diagnostics of plasma conditions, fielded to look at dopant materials in the deuterium, have shown that the stagnated deuterium plasma achieved electron temperatures of 2.2keV and ion densities of 2×1020cm−3, in agreement with the MHD calculations.


Physics of Plasmas | 2007

Z-pinch plasma neutron sources

A.L. Velikovich; R. W. Clark; Jack Davis; Y. K. Chong; C. Deeney; C.A. Coverdale; C. L. Ruiz; G. W. Cooper; A.J. Nelson; J. Franklin; Leonid Rudakov

A deuterium gas-puff load imploded by a multi-MA current driver from a large initial diameter could be a powerful source of fusion neutrons, a plasma neutron source (PNS). Unlike the beam-target neutrons produced in Z-pinch plasmas in the 1950s and deuterium-fiber experiments in the 1980s, the neutrons generated in deuterium gas-puffs with current levels achieved in recent experiments on the Z facility at Sandia National Laboratories could contain a substantial fraction of thermonuclear origin. For recent deuterium gas-puff shots on Z, our analytic estimates and one- and two-dimensional simulations predict thermal neutron yields ∼3×1013, in fair agreement with the yields recently measured on Z [C. A. Coverdale et al., Phys. Plasmas (to be published)]. It is demonstrated that the hypothesis of a beam-target origin of the observed fusion neutrons implies a very high Z-pinch-driver-to-fast-ions energy transfer efficiency, 5 to 10%, which would make a multi-MA deuterium Z-pinch the most efficient light-ion ac...


Physics of Plasmas | 1999

Insights and applications of two-dimensional simulations to Z-pinch experiments

D.L. Peterson; R.L. Bowers; W. Matuska; K. D. McLenithan; Gordon Andrew Chandler; C. Deeney; Mark S. Derzon; M.R. Douglas; M. K. Matzen; T. J. Nash; Rick B. Spielman; K.W. Struve; W. A. Stygar; N. F. Roderick

A two-dimensional (2D) Eulerian radiation-magnetohydrodynamic code has been used to successfully simulate hollow metallic z-pinch experiments fielded on several facilities with a wide variety of drive conditions, time scales, and loads. The 2D simulations of these experiments reproduce important quantities of interest including the radiation pulse energy, power, and pulse width. This match is obtained through the use of an initial condition: the amplitude of a random density perturbation imposed on the initial plasma shell. The perturbations seed the development of magnetically driven Rayleigh–Taylor instabilities which greatly affect the dynamics of the implosion and the resulting production of radiation. Analysis of such simulations allows insights into the physical processes by which these calculations reproduce the experimental results. As examples, the insights gained from the simulations of Sandia “Z” accelerator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)] experiments have allowed for the ...


Review of Scientific Instruments | 1999

Fast Resistive Bolometry

Rick B. Spielman; C. Deeney; D. L. Fehl; D.L. Hanson; N. R. Keltner; J. McGurn; J. L. McKenney

Resistive bolometry is an accurate, robust, spectrally broadband technique for measuring absolute x-ray fluence and flux. Bolometry is an independent technique for x-ray measurements that is based on a different set of physical properties than other diagnostics such as x-ray diodes, photoconducting detectors, and P-I-N diodes. Bolometers use the temperature-driven change in element resistivity to determine the total deposited energy. The calibration of such a device is based on fundamental material properties and its physical dimensions. We describe the use of nickel and gold bolometers to measure x rays generated by high-power z pinches on Sandia’s Saturn and Z accelerators. The Sandia bolometer design described herein has a pulse response of ∼1 ns. We describe in detail the fabrication, fielding, and data analysis issues leading to highly accurate x-ray measurements. The fundamental accuracy of resistive bolometry will be discussed.


Journal of Quantitative Spectroscopy & Radiative Transfer | 1997

Laboratory measurement of opacity for stellar envelopes

P. T. Springer; K. L. Wong; Carlos A. Iglesias; Joseph Hammer; John L. Porter; A. Toor; W.H. Goldstein; B.G. Wilson; Forrest J. Rogers; C. Deeney; D.S. Dearborn; C. Bruns; J. Emig; R. E. Stewart

Abstract We have measured the frequency dependent opacity of a low density iron plasma in Local Thermodynamic Equilibrium (LTE). The measured iron plasma conditions of 20 eV temperature and 10 −4 g/cc density, match those of stellar envelopes where iron dominates the radiative transport. Properties of the M-shell Δn = 0 transition arrays in iron are measured in this experiment, providing the first direct test of opacity models used in stellar pulsation and evolution calculations. We describe new methods to obtain LTE opacity data for plasmas at 100 times lower density than previous measurements. Experimental requirements include: high spectral resolution, large homogenous plasma sources, and Planckian radiation fields lasting tens of nanoseconds. These conditions were achieved using the 500 kJ SATURN facility at Sandia National Laboratory.

Collaboration


Dive into the C. Deeney's collaboration.

Top Co-Authors

Avatar

J. P. Apruzese

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

C.A. Coverdale

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

T. J. Nash

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

B. Jones

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.W. Thornhill

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rick B. Spielman

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

K.W. Struve

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

J. Davis

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. A. Stygar

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge