C. A. Jenkins
Lawrence Berkeley National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. A. Jenkins.
Applied Physics Letters | 2011
Peter Klaer; C. A. Jenkins; Vajiheh Alijani; Jürgen Winterlik; Benjamin Balke; Claudia Felser; H. J. Elmers
Ferrimagnetic Mn3−xCoxGa compounds have been investigated by magnetic circular dichroism in x-ray absorption (XMCD). Compounds with x>0.5 crystallize in the CuHg2Ti structure. A tetragonal distortion of the cubic structure occurs for x≤0.5. For the cubic phase, magnetometry reveals a linearly increasing magnetization of 2x Bohr magnetons per formula unit obeying the generalized Slater–Pauling rule. XMCD confirms the ferrimagnetic character with Mn atoms occupying two different sublattices with antiparallel spin orientation and different degrees of spin localization and identifies the region 0.6<x≤0.8 as most promising for a high spin polarization at the Fermi level. Individual Mn moments on inequivalent sites are compared to theoretical predictions.
Advanced Materials | 2012
Jürgen Winterlik; Stanislav Chadov; Arunava Gupta; Vajiheh Alijani; Teuta Gasi; Kai Filsinger; Benjamin Balke; Gerhard H. Fecher; C. A. Jenkins; Frederick Casper; J. Kübler; Guo-Dong Liu; Li Gao; Stuart S. P. Parkin; Claudia Felser
Band Jahn-Teller type structural instabilities of cubic Mn(2)YZ Heusler compounds causing tetragonal distortions can be predicted by ab initio band-structure calculations. This allows for identification of new Heusler materials with tunable magnetic and structural properties that can satisfy the demands for spintronic applications, such as in spin-transfer torque-based devices.
Journal of the Royal Society Interface | 2014
J. Everett; Eva Céspedes; L. R. Shelford; Christopher Exley; Joanna F. Collingwood; Jon Dobson; G. van der Laan; C. A. Jenkins; Elke Arenholz; N. D. Telling
For decades, a link between increased levels of iron and areas of Alzheimers disease (AD) pathology has been recognized, including AD lesions comprised of the peptide β-amyloid (Aβ). Despite many observations of this association, the relationship between Aβ and iron is poorly understood. Using X-ray microspectroscopy, X-ray absorption spectroscopy, electron microscopy and spectrophotometric iron(II) quantification techniques, we examine the interaction between Aβ(1–42) and synthetic iron(III), reminiscent of ferric iron stores in the brain. We report Aβ to be capable of accumulating iron(III) within amyloid aggregates, with this process resulting in Aβ-mediated reduction of iron(III) to a redox-active iron(II) phase. Additionally, we show that the presence of aluminium increases the reductive capacity of Aβ, enabling the redox cycling of the iron. These results demonstrate the ability of Aβ to accumulate iron, offering an explanation for previously observed local increases in iron concentration associated with AD lesions. Furthermore, the ability of iron to form redox-active iron phases from ferric precursors provides an origin both for the redox-active iron previously witnessed in AD tissue, and the increased levels of oxidative stress characteristic of AD. These interactions between Aβ and iron deliver valuable insights into the process of AD progression, which may ultimately provide targets for disease therapies.
Physical Review Letters | 2013
Alexander J. Grutter; Hao Yang; Brian J. Kirby; Michael Fitzsimmons; Jeffery A. Aguiar; Nigel D. Browning; C. A. Jenkins; Elke Arenholz; Virat Mehta; U. S. Alaan; Y. Suzuki
We observe interfacial ferromagnetism in superlattices of the paramagnetic metal LaNiO3 and the antiferromagnetic insulator CaMnO3. LaNiO3 exhibits a thickness dependent metal-insulator transition and we find the emergence of ferromagnetism to be coincident with the conducting state of LaNiO3. That is, only superlattices in which the LaNiO3 layers are metallic exhibit ferromagnetism. Using several magnetic probes, we have determined that the ferromagnetism arises in a single unit cell of CaMnO3 at the interface. Together these results suggest that ferromagnetism can be attributed to a double exchange interaction among Mn ions mediated by the adjacent itinerant metal.
Inorganic Chemistry | 2014
James Everett; Eva Céspedes; L. R. Shelford; Christopher Exley; Joanna F. Collingwood; Jon Dobson; Gerrit van der Laan; C. A. Jenkins; Elke Arenholz; N. D. Telling
Recent work has demonstrated increased levels of redox-active iron biominerals in Alzheimers disease (AD) tissue. However, the origin, nature, and role of iron in AD pathology remains unclear. Using X-ray absorption, X-ray microspectroscopy, and electron microscopy techniques, we examined interactions between the AD peptide β-amyloid (Aβ) and ferrihydrite, which is the ferric form taken when iron is stored in humans. We report that Aβ is capable of reducing ferrihydrite to a pure iron(II) mineral where antiferromagnetically ordered Fe(2+) cations occupy two nonequivalent crystal symmetry sites. Examination of these iron(II) phases following air exposure revealed a material consistent with the iron(II)-rich mineral magnetite. These results demonstrate the capability of Aβ to induce the redox-active biominerals reported in AD tissue from natural iron precursors. Such interactions between Aβ and ferrihydrite shed light upon the processes of AD pathogenesis, while providing potential targets for future therapies.
Journal of Physical Chemistry B | 2014
Ross T. DeVol; Rebecca A. Metzler; Lee Kabalah-Amitai; Boaz Pokroy; Yael Politi; Assaf Gal; Lia Addadi; Steve Weiner; Alejandro Fernandez-Martinez; Raffaella Demichelis; Julian D. Gale; Johannes Ihli; Fiona C. Meldrum; Adam Z. Blonsky; Christopher E. Killian; C. B. Salling; Anthony Young; Matthew A. Marcus; Andreas Scholl; Andrew Doran; C. A. Jenkins; Hans A. Bechtel; P. U. P. A. Gilbert
X-ray absorption near-edge structure (XANES) spectroscopy and spectromicroscopy have been extensively used to characterize biominerals. Using either Ca or C spectra, unique information has been obtained regarding amorphous biominerals and nanocrystal orientations. Building on these results, we demonstrate that recording XANES spectra of calcium carbonate at the oxygen K-edge enables polarization-dependent imaging contrast (PIC) mapping with unprecedented contrast, signal-to-noise ratio, and magnification. O and Ca spectra are presented for six calcium carbonate minerals: aragonite, calcite, vaterite, monohydrocalcite, and both hydrated and anhydrous amorphous calcium carbonate. The crystalline minerals reveal excellent agreement of the extent and direction of polarization dependences in simulated and experimental XANES spectra due to X-ray linear dichroism. This effect is particularly strong for aragonite, calcite, and vaterite. In natural biominerals, oxygen PIC-mapping generated high-magnification maps of unprecedented clarity from nacre and prismatic structures and their interface in Mytilus californianus shells. These maps revealed blocky aragonite crystals at the nacre-prismatic boundary and the narrowest calcite needle-prisms. In the tunic spicules of Herdmania momus, O PIC-mapping revealed the size and arrangement of some of the largest vaterite single crystals known. O spectroscopy therefore enables the simultaneous measurement of chemical and orientational information in CaCO3 biominerals and is thus a powerful means for analyzing these and other complex materials. As described here, PIC-mapping and spectroscopy at the O K-edge are methods for gathering valuable data that can be carried out using spectromicroscopy beamlines at most synchrotrons without the expense of additional equipment.
Scientific Reports | 2015
Yutian Wang; Yu Liu; Gang Wang; W. Anwand; C. A. Jenkins; Elke Arenholz; Frans Munnik; Ovidiu D. Gordan; Georgeta Salvan; D. R. T. Zahn; Xiaolong Chen; Sibylle Gemming; Manfred Helm; Shengqiang Zhou
Ferromagnetism can occur in wide-band gap semiconductors as well as in carbon-based materials when specific defects are introduced. It is thus desirable to establish a direct relation between the defects and the resulting ferromagnetism. Here, we contribute to revealing the origin of defect-induced ferromagnetism using SiC as a prototypical example. We show that the long-range ferromagnetic coupling can be attributed to the p electrons of the nearest-neighbor carbon atoms around the VSiVC divacancies. Thus, the ferromagnetism is traced down to its microscopic electronic origin.
Physical Chemistry Chemical Physics | 2014
Yu̅suke Nanba; Daisuke Asakura; Masashi Okubo; Haoshen Zhou; Kenta Amemiya; Kozo Okada; Per-Anders Glans; C. A. Jenkins; Elke Arenholz; Jinghua Guo
The electronic structure of Na2[Fe(CN)5NO]·2H2O (sodium nitroprusside: SNP) was investigated by using soft X-ray absorption (XA) spectroscopy. The Fe L2,3-edge XA spectrum of SNP exhibited distinct and very large satellite peaks for L3 and L2 regions, which is different from the spectra of hexacyanoferrates and the other iron compounds. A configuration-interaction full-multiplet calculation, in which the ligand molecular orbitals for the C4v symmetry were taken into account, revealed the Fe(2+) low-spin state with very strong effects of metal-to-ligand charge-transfer from the Fe 3d to NO 2p orbitals.
Applied Physics Letters | 2012
C. A. Jenkins; Andreas Scholl; R. Kainuma; H. J. Elmers; Toshihiro Omori
The magnetic domain structure in single crystals of a Heusler shape memory compound near the composition Fe2MnGa was observed during phase transition by photoelectron emission microscopy at Beamline 11.0.1.1 of the Advanced Light Source. The behavior is comparable with recent observations of an adaptive martensite phase in prototype Ni2MnGa, although the pinning in the recent work is an epitaxial interface and in this work the effective pinning plane is a boundary between martensitic variants that transform in a self-accommodating way from the single crystal austenite phase present at high temperatures. Temperature dependent observations of the twinning structure give information as to the coupling behavior between the magnetism and the structural evolution.
Applied Physics Letters | 2015
Jinling Zhou; Vu Thanh Tra; Shuai Dong; Robbyn Trappen; Matthew A. Marcus; C. A. Jenkins; Charles Frye; Evan Wolfe; Ryan M. White; Srinivas Polisetty; Jiunn-Yuan Lin; James M. LeBeau; Ying-Hao Chu; Mikel Holcomb
Magnetoelectric materials have great potential to revolutionize electronic devices due to the coupling of their electric and magnetic properties. Thickness varying La0.7Sr0.3MnO3 (LSMO)/PbZr0.2Ti0.8O3 (PZT) heterostructures were built and measured in this article by valence sensitive x-ray absorption spectroscopy. The sizing effects of the heterostructures on the LSMO/PZT magnetoelectric interfaces were investigated through the behavior of Mn valence, a property associated with the LSMO magnetization. We found that Mn valence increases with both LSMO and PZT thickness. Piezoresponse force microscopy revealed a transition from monodomain to polydomain structure along the PZT thickness gradient. The ferroelectric surface charge may change with domain structure and its effects on Mn valence were simulated using a two-orbital double-exchange model. The screening of ferroelectric surface charge increases the electron charges in the interface region, and greatly changes the interfacial Mn valence, which likely ...