Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Aldo Rinaldi is active.

Publication


Featured researches published by C. Aldo Rinaldi.


Journal of the American College of Cardiology | 2011

Invasive Acute Hemodynamic Response to Guide Left Ventricular Lead Implantation Predicts Chronic Remodeling in Patients Undergoing Cardiac Resynchronization Therapy

Simon G. Duckett; Matthew Ginks; Anoop Shetty; Julian Bostock; Jaswinder Gill; Shoaib Hamid; Stam Kapetanakis; Eliane Cunliffe; Reza Razavi; Gerry Carr-White; C. Aldo Rinaldi

OBJECTIVES We evaluated the relationship between acute hemodynamic response (AHR) and reverse remodeling (RR) in cardiac resynchronization therapy (CRT). BACKGROUND CRT reduces mortality and morbidity in heart failure patients; however, up to 30% of patients do not derive symptomatic benefit. Higher proportions do not remodel. Multicenter trials have shown echocardiographic techniques are poor at improving response rates. We hypothesized the degree of AHR at implant can predict which patients remodel. METHODS Thirty-three patients undergoing CRT (21 dilated and 12 ischemic cardiomyopathy) were studied. Left ventricular (LV) volumes were assessed before and after CRT. The AHR (maximum rate of left ventricular pressure [LV-dP/dt(max)]) was assessed at implant with a pressure wire in the LV cavity. Largest percentage rise in LV-dP/dt(max) from baseline (atrial antibradycardia pacing or right ventricular pacing with atrial fibrillation) to dual-chamber pacing (DDD)-LV was used to determine optimal coronary sinus LV lead position. Reverse remodeling was defined as reduction in LV end systolic volume ≥15% at 6 months. RESULTS The LV-dP/dt(max) increased significantly from baseline (801 ± 194 mm Hg/s to 924 ± 203 mm Hg/s, p < 0.001) with DDD-LV pacing for the optimal LV lead position. The LV end systolic volume decreased from 186 ± 68 ml to 157 ± 68 ml (p < 0.001). Eighteen (56%) patients exhibited RR. There was a significant relationship between percentage rise in LV-dP/dt(max) and RR for DDD-LV pacing (p < 0.001). A similar relationship for AHR and RR in dilated cardiomyopathy and ischemic cardiomyopathy (p = 0.01 and p = 0.006) was seen. CONCLUSIONS Acute hemodynamic response to LV pacing is useful for predicting which patients are likely to remodel in response to CRT both for dilated cardiomyopathy and ischemic cardiomyopathy. Using AHR has the potential to guide LV lead positioning and improve response rates.


IEEE Transactions on Biomedical Engineering | 2010

3-D Visualization of Acute RF Ablation Lesions Using MRI for the Simultaneous Determination of the Patterns of Necrosis and Edema

Benjamin Knowles; Dennis Caulfield; Michael Cooklin; C. Aldo Rinaldi; Jaswinder Gill; Julian Bostock; Reza Razavi; Tobias Schaeffter; Kawal S. Rhode

Catheter ablation using RF energy is a common treatment for atrial arrhythmias. Although this treatment provides a potential cure, currently, there remains a high proportion of patients returning for repeat ablations. Electrophysiologists have little information to verify that a lesion has been created in the myocardium. Temporary electrical block can be created from edema, which will subside. MRI can visualize acute and chronic ablation lesions using delayed-enhancement techniques. However, the ablation patterns cannot be determined from 2-D images alone. Using the combination of T2-weighted and delayed-enhancement MRI, ablation lesions can be characterized in terms of necrosis and edema. A novel 3-D visualization technique is presented that projects the image intensity due the lesions onto a 3-D cardiac surface, allowing the complete, simultaneous visualization of the delayed-enhancement and T2 -weighted ablation patterns. Results show successful visualization of ablation patterns in 18 patients, and an application of this technique is presented in which electroanatomical mapping systems can be validated by overlaying the acquired ablation points onto the cardiac surfaces and assessing the correlation with the lesion maps.


Medical Image Analysis | 2012

Registration of 3D trans-esophageal echocardiography to x-ray fluoroscopy using image-based probe tracking

Gang Gao; Graeme P. Penney; YingLiang Ma; Nicolas Gogin; Pascal Yves Francois Cathier; Aruna Arujuna; Geraint Morton; Dennis Caulfield; Jaswinder Gill; C. Aldo Rinaldi; Jane Hancock; Simon Redwood; Martyn Thomas; Reza Razavi; Geert Gijsbers; Kawal S. Rhode

Two-dimensional (2D) X-ray imaging is the dominant imaging modality for cardiac interventions. However, the use of X-ray fluoroscopy alone is inadequate for the guidance of procedures that require soft-tissue information, for example, the treatment of structural heart disease. The recent availability of three-dimensional (3D) trans-esophageal echocardiography (TEE) provides cardiologists with real-time 3D imaging of cardiac anatomy. Increasingly X-ray imaging is now supported by using intra-procedure 3D TEE imaging. We hypothesize that the real-time co-registration and visualization of 3D TEE and X-ray fluoroscopy data will provide a powerful guidance tool for cardiologists. In this paper, we propose a novel, robust and efficient method for performing this registration. The major advantage of our method is that it does not rely on any additional tracking hardware and therefore can be deployed straightforwardly into any interventional laboratory. Our method consists of an image-based TEE probe localization algorithm and a calibration procedure. While the calibration needs to be done only once, the GPU-accelerated registration takes approximately from 2 to 15s to complete depending on the number of X-ray images used in the registration and the image resolution. The accuracy of our method was assessed using a realistic heart phantom. The target registration error (TRE) for the heart phantom was less than 2mm. In addition, we assess the accuracy and the clinical feasibility of our method using five patient datasets, two of which were acquired from cardiac electrophysiology procedures and three from trans-catheter aortic valve implantation procedures. The registration results showed our technique had mean registration errors of 1.5-4.2mm and 95% capture range of 8.7-11.4mm in terms of TRE.


Interface Focus | 2011

Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia

Jatin Relan; Phani Chinchapatnam; Maxime Sermesant; Kawal S. Rhode; Matthew Ginks; Hervé Delingette; C. Aldo Rinaldi; Reza Razavi; Nicholas Ayache

In order to translate the important progress in cardiac electrophysiology modelling of the last decades into clinical applications, there is a requirement to make macroscopic models that can be used for the planning and performance of the clinical procedures. This requires model personalization, i.e. estimation of patient-specific model parameters and computations compatible with clinical constraints. Simplified macroscopic models can allow a rapid estimation of the tissue conductivity, but are often unreliable to predict arrhythmias. Conversely, complex biophysical models are more complete and have mechanisms of arrhythmogenesis and arrhythmia sustainibility, but are computationally expensive and their predictions at the organ scale still have to be validated. We present a coupled personalization framework that combines the power of the two kinds of models while keeping the computational complexity tractable. A simple eikonal model is used to estimate the conductivity parameters, which are then used to set the parameters of a biophysical model, the Mitchell–Schaeffer (MS) model. Additional parameters related to action potential duration restitution curves for the tissue are further estimated for the MS model. This framework is applied to a clinical dataset derived from a hybrid X-ray/magnetic resonance imaging and non-contact mapping procedure on a patient with heart failure. This personalized MS model is then used to perform an in silico simulation of a ventricular tachycardia (VT) stimulation protocol to predict the induction of VT. This proof of concept opens up possibilities of using VT induction modelling in order to both assess the risk of VT for a given patient and also to plan a potential subsequent radio-frequency ablation strategy to treat VT.


Circulation-heart Failure | 2011

A Simultaneous X-Ray/MRI and Noncontact Mapping Study of the Acute Hemodynamic Effect of Left Ventricular Endocardial and Epicardial Cardiac Resynchronization Therapy in Humans

Matthew Ginks; Pier D. Lambiase; Simon G. Duckett; Julian Bostock; Phani Chinchapatnam; Kawal S. Rhode; Mark McPhail; Marcus Simon; Cliff Bucknall; Gerald Carr-White; Reza Razavi; C. Aldo Rinaldi

Background—Cardiac resynchronization therapy (CRT) using endocardial left ventricular (LV) pacing may be superior to conventional CRT. We studied the acute hemodynamic response to conventional CRT and LV pacing from different endocardial sites using a combined cardiac MRI and LV noncontact mapping (NCM) protocol to gain insights into the underlying mechanisms. Methods and Results—Fifteen patients (age, 63±10 years; 12 men) awaiting CRT were studied in a combined x-ray and MRI laboratory. Delayed-enhancement cardiac magnetic resonance was performed to define areas of myocardial fibrosis. Patients underwent an electrophysiological study incorporating endocardial and epicardial LV pacing. Acute hemodynamic response was measured using a pressure wire within the LV cavity to derive LV dP/dt max. NCM was used to define areas of slow conduction. There was a significant improvement in all LV pacing modes versus baseline (P<0.001). LV endocardial CRT from the best endocardial site was superior to conventional CRT, with a 79.8±49.0% versus 59.6±49.5% increase in LV dP/dt max of from baseline (P<0.05). The hemodynamic benefits of pacing were greater when LV stimulation was performed outside of areas of slow conduction defined by NCM (P<0.001). Delayed-enhancement cardiac magnetic resonance was able to delineate zones of slow conduction seen with NCM in ischemic patients but was unreliable in nonischemic patients. Conclusions—Endocardial LV pacing appears superior to conventional CRT, although the optimal site varies between subjects and is influenced by pacing within areas of slow conduction. Delayed-enhancement cardiac magnetic resonance was a poor predictor of zones of slow conduction in nonischemic patients.


Pacing and Clinical Electrophysiology | 2003

A Randomized Prospective Study of Single Coil Versus Dual Coil Defibrillation in Patients with Ventricular Arrhythmias Undergoing Implantable Cardioverter Defibrillator Therapy

C. Aldo Rinaldi; Ron Simon; Peter Geelen; Sven Reek; Artur Baszko; Martin Kuehl; Jaswinder Gill

ICD implantation is standard therapy for malignant ventricular arrhythmias. The advantage of dual and single coil defibrillator leads in the successful conversion of arrhythmias is unclear. This study compared the effectiveness of dual versus single coil defibrillation leads. The study was a prospective, multicenter, randomized study comparing a dual with a single coil defibrillation system as part of an ICD using an active pectoral electrode. Seventy‐six patients (64 men, 12 women; age 61 ± 11 years ) were implanted with a dual (group 1, n = 38) or single coil lead system (group 2, n = 38 ). The patients represented a typical ICD cohort: 60% presented with ischemic cardiomyopathy as their primary cardiac disease, the mean left ventricular ejection fraction was 0.406 ± 0.158 . The primary tachyarrhythmia was monomorphic ventricular tachyarrhythmia in 52.6% patients and ventricular fibrillation in 38.4%. There was no significant difference in terms of P and R wave amplitudes, pacing thresholds, and lead impedance at implantation and follow‐up in the two groups. There was similarly no difference in terms of defibrillation thresholds (DFT) at implantation. Patients in group 1 had an average DFT of 10.2 ± 5.2 J compared to 10.3 ± 4.1 J in Group 2, P = NS. This study demonstrates no significant advantage of a dual coil lead system over a single coil system in terms of lead values and defibrillation thresholds. This may have important bearing on the choice of lead systems when implanting ICDs. (PACE 2003; 26:1684–1690)


Medical Image Analysis | 2013

The estimation of patient-specific cardiac diastolic functions from clinical measurements

Jiahe Xi; Pablo Lamata; Steven Niederer; Sander Land; Wenzhe Shi; Xiahai Zhuang; Sebastien Ourselin; Simon G. Duckett; Anoop Shetty; C. Aldo Rinaldi; Daniel Rueckert; Reza Razavi; Nic Smith

An unresolved issue in patients with diastolic dysfunction is that the estimation of myocardial stiffness cannot be decoupled from diastolic residual active tension (AT) because of the impaired ventricular relaxation during diastole. To address this problem, this paper presents a method for estimating diastolic mechanical parameters of the left ventricle (LV) from cine and tagged MRI measurements and LV cavity pressure recordings, separating the passive myocardial constitutive properties and diastolic residual AT. Dynamic C1-continuous meshes are automatically built from the anatomy and deformation captured from dynamic MRI sequences. Diastolic deformation is simulated using a mechanical model that combines passive and active material properties. The problem of non-uniqueness of constitutive parameter estimation using the well known Guccione law is characterized by reformulation of this law. Using this reformulated form, and by constraining the constitutive parameters to be constant across time points during diastole, we separate the effects of passive constitutive properties and the residual AT during diastolic relaxation. Finally, the method is applied to two clinical cases and one control, demonstrating that increased residual AT during diastole provides a potential novel index for delineating healthy and pathological cases.


Europace | 2012

Relationship between endocardial activation sequences defined by high-density mapping to early septal contraction (septal flash) in patients with left bundle branch block undergoing cardiac resynchronization therapy

Simon G. Duckett; Oscar Camara; Matthew Ginks; Julian Bostock; Phani Chinchapatnam; Maxime Sermesant; Ali Pashaei; P D Lambiase; Jaswinder Gill; Gerry Carr-White; Alejandro F. Frangi; Reza Razavi; Bart Bijnens; C. Aldo Rinaldi

AIMS Early inward motion and thickening/thinning of the ventricular septum associated with left bundle branch block is known as the septal flash (SF). Correction of SF corresponds to response to cardiac resynchronization therapy (CRT). We hypothesized that SF was associated with a specific left ventricular (LV) activation pattern predicting a favourable response to CRT. We sought to characterize the spatio-temporal relationship between electrical and mechanical events by directly comparing non-contact mapping (NCM), acute haemodynamics, and echocardiography. METHODS AND RESULTS Thirteen patients (63 ± 10 years, 10 men) with severe heart failure (ejection fraction 22.8 ± 5.8%) awaiting CRT underwent echocardiography and NCM pre-implant. Presence and extent of SF defined visually and with M-mode was fused with NCM bulls eye plots of endocardial activation patterns. LV-dP/dt(max) was measured during different pacing modes. Five patients had a large SF, four small SF, and four no SF. Large SF patients had areas of conduction block in non-infarcted regions, whereas those with small or no SF did not. Patients with large SF had greater acute response to LV and biventricular (BIV) pacing vs. those with small/no SF (% increase dP/dt 28 ± 14 vs. 11 ± 19% for LV pacing and 42 ± 28 vs. 22 ± 21% for BIV pacing) (P < 0.05). This translated into a more favourable chronic response to CRT. The lines of conduction block disappeared with LV/BIV pacing while remaining with right ventricle pacing. CONCLUSION A strong association exists between electrical activation and mechanical deformation of the septum. Correction of both mechanical synchrony and the functional conduction block by CRT may explain the favourable response in patients with SF.


Circulation-arrhythmia and Electrophysiology | 2012

Benefits of endocardial and multisite pacing are dependent on the type of left ventricular electric activation pattern and presence of ischemic heart disease: insights from electroanatomic mapping.

Matthew Ginks; Anoop Shetty; Pier D. Lambiase; Simon G. Duckett; Julian Bostock; Janet Peacock; Kawal S. Rhode; Cliff Bucknall; Jaswinder Gill; Peter Taggart; Christophe Leclercq; Gerald Carr-White; Reza Razavi; C. Aldo Rinaldi

Background—There is considerable heterogeneity in the myocardial substrate of patients undergoing cardiac resynchronization therapy (CRT), in particular in the etiology of heart failure and in the location of conduction block within the heart. This may account for variability in response to CRT. New approaches, including endocardial and multisite left ventricular (LV) stimulation, may improve CRT response. We sought to evaluate these approaches using noncontact mapping to understand the underlying mechanisms. Methods and Results—Ten patients (8 men and 2 women; mean [SD] age 63 [12] years; LV ejection fraction 246%; QRS duration 161 [24] ms) fulfilling conventional CRT criteria underwent an electrophysiological study, with assessment of acute hemodynamic response to conventional CRT as well as LV endocardial and multisite pacing. LV activation pattern was assessed using noncontact mapping. LV endocardial pacing gave a superior acute hemodynamic response compared with conventional CRT (26% versus 37% increase in LV dP/dtmax, respectively; P<0.0005). There was a trend toward further incremental benefit from multisite LV stimulation, although this did not reach statistical significance (P=0.08). The majority (71%) of patients with nonischemic heart failure etiology or functional block responded to conventional CRT, whereas those with myocardial scar or absence of functional block often required endocardial or multisite pacing to achieve CRT response. Conclusions—Endocardial or multisite pacing may be required in certain subsets of patients undergoing CRT. Patients with ischemic cardiomyopathy and those with narrower QRS, in particular, may stand to benefit.


Circulation-arrhythmia and Electrophysiology | 2015

Repeat Left Atrial Catheter Ablation: Cardiac Magnetic Resonance Prediction of Endocardial Voltage and Gaps in Ablation Lesion Sets

James Harrison; Christian Sohns; Nick Linton; Rashed Karim; Steven E. Williams; Kawal S. Rhode; Jaswinder Gill; Michael Cooklin; C. Aldo Rinaldi; Matthew Wright; Tobias Schaeffter; Reza Razavi; Mark D. O’Neill

Background—Studies have reported an inverse relationship between late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) signal intensity and left atrial (LA) endocardial voltage after LA ablation. However, there is controversy regarding the reproducibility of atrial LGE CMR and its ability to identify gaps in ablation lesions. Using systematic and objective techniques, this study examines the correlation between atrial CMR and endocardial voltage. Methods and Results—Twenty patients who had previous ablation for atrial fibrillation and represented with paroxysmal atrial fibrillation or atrial tachycardia underwent preablation LGE CMR. During the ablation procedure, high-density point-by-point Carto voltage maps were acquired. Three-dimensional CMR reconstructions were registered with the Carto anatomies to allow comparison of voltage and LGE signal intensity. Signal intensities around the left and right pulmonary vein antra and along the LA roof and mitral lines on the CMR-segmented LA shells were extracted to examine differences between electrically isolated and reconnected lesions. There were a total of 6767 data points across the 20 patients. Only 119 (1.8%) of the points were ⩽0.05 mV. There was only a weak inverse correlation between either unipolar (r=−0.18) or bipolar (r=−0.17) voltage and LGE CMR signal intensities with low voltage occurring across a large range of signal intensities. Signal intensities were not statistically different for electrically isolated and reconnected lesions. Conclusions—This study demonstrates that there is only a weak point-by-point relationship between LGE CMR and endocardial voltage in patients undergoing repeat LA ablation. Using an objective method of assessing gaps in ablation lesions, LGE CMR is unable to reliably predict sites of electrical conduction.

Collaboration


Dive into the C. Aldo Rinaldi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaswinder Gill

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Bostock

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Cooklin

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge