Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Allison Gray is active.

Publication


Featured researches published by C. Allison Gray.


Biology of Reproduction | 2001

Developmental biology of uterine glands

C. Allison Gray; Frank F. Bartol; Becky J. Tarleton; Anne A. Wiley; Greg A. Johnson; Fuller W. Bazer; Thomas E. Spencer

Abstract All mammalian uteri contain endometrial glands that synthesize or transport and secrete substances essential for survival and development of the conceptus (embryo/fetus and associated extraembryonic membranes). In rodents, uterine secretory products of the endometrial glands are unequivocally required for establishment of uterine receptivity and conceptus implantation. Analyses of the ovine uterine gland knockout model support a primary role for endometrial glands and, by default, their secretions in peri-implantation conceptus survival and development. Uterine adenogenesis is the process whereby endometrial glands develop. In humans, this process begins in the fetus, continues postnatally, and is completed during puberty. In contrast, endometrial adenogenesis is primarily a postnatal event in sheep, pigs, and rodents. Typically, endometrial adenogenesis involves differentiation and budding of glandular epithelium from luminal epithelium, followed by invagination and extensive tubular coiling and branching morphogenesis throughout the uterine stroma to the myometrium. This process requires site-specific alterations in cell proliferation and extracellular matrix (ECM) remodeling as well as paracrine cell-cell and cell-ECM interactions that support the actions of specific hormones and growth factors. Studies of uterine development in neonatal ungulates implicate prolactin, estradiol-17β, and their receptors in mechanisms regulating endometrial adenogenesis. These same hormones appear to regulate endometrial gland morphogenesis in menstruating primates and humans during reconstruction of the functionalis from the basalis endometrium after menses. In sheep and pigs, extensive endometrial gland hyperplasia and hypertrophy occur during gestation, presumably to provide increasing histotrophic support for conceptus growth and development. In the rabbit, sheep, and pig, a servomechanism is proposed to regulate endometrial gland development and differentiated function during pregnancy that involves sequential actions of ovarian steroid hormones, pregnancy recognition signals, and lactogenic hormones from the pituitary or placenta. That disruption of uterine development during critical organizational periods can alter the functional capacity and embryotrophic potential of the adult uterus reinforces the importance of understanding the developmental biology of uterine glands. Unexplained high rates of peri-implantation embryonic loss in humans and livestock may reflect defects in endometrial gland morphogenesis due to genetic errors, epigenetic influences of endocrine disruptors, and pathological lesions.


Biology of Reproduction | 2001

Endometrial Glands Are Required for Preimplantation Conceptus Elongation and Survival

C. Allison Gray; Kristin M. Taylor; W. Shawn Ramsey; Jonathan R. Hill; Fuller W. Bazer; Frank F. Bartol; Thomas E. Spencer

Abstract Endometrial glands secrete molecules hypothesized to support conceptus growth and development. In sheep, endometrial gland morphogenesis occurs postnatally and can be epigenetically ablated by neonatal progestin exposure. The resulting stable adult uterine gland knockout (UGKO) phenotype was used here to test the hypothesis that endometrial glands are required for successful pregnancy. Mature UGKO ewes were bred repeatedly to fertile rams, but no pregnancies were detected by ultrasound on Day 25. Day 7 blastocysts from normal superovulated ewes were then transferred synchronously into Day 7 control or UGKO ewes. Ultrasonography on Days 25–65 postmating indicated that pregnancy was established in control, but not in UGKO ewes. To examine early uterine-embryo interactions, four control and eight UGKO ewes were bred to fertile rams. On Day 14, their uteri were flushed. The uterus of each control ewe contained two filamentous conceptuses of normal length. Uteri from four UGKO ewes contained no conceptus. Uteri of three UGKO ewes contained a single severely growth-retarded tubular conceptus, whereas the remaining ewe contained a single filamentous conceptus. Histological analyses of these uteri revealed that endometrial gland density was directly related to conceptus survival and developmental state. Day 14 UGKO uteri that were devoid of endometrial glands did not support normal conceptus development and contained either no conceptuses or growth-retarded tubular conceptuses. The Day 14 UGKO uterus with moderate gland development contained a filamentous conceptus. Collectively, these results demonstrate that endometrial glands and, by inference, their secretions are required for periimplantation conceptus survival and development.


Biology of Reproduction | 2006

Identification of Endometrial Genes Regulated by Early Pregnancy, Progesterone, and Interferon Tau in the Ovine Uterus

C. Allison Gray; Colette A. Abbey; Phillip D. Beremand; Youngsok Choi; Jennifer L. Farmer; David L. Adelson; Terry L. Thomas; Fuller W. Bazer; Thomas E. Spencer

Abstract During early pregnancy in ruminants, progesterone (P4) from the corpus luteum and interferon tau (IFNT) from the conceptus act on the endometrium to regulate genes important for uterine receptivity and conceptus growth. The use of the uterine gland knockout (UGKO) ewe has demonstrated the critical role of epithelial secretions in regulation of conceptus survival and growth. A custom ovine cDNA array was used to identify alterations in gene expression of endometria from Day 14 cyclic, pregnant, and UGKO ewes (study 1) and from cyclic ewes treated with P4 or P4 with ZK 136,317 antiprogestin and control proteins or IFNT (study 2). In study 1, expression of 47 genes was more than 2-fold different between Day 14 pregnant and cyclic endometria, whereas 23 genes was different between Day 14 cyclic and UGKO endometria. In study 2, 70 genes were different due to P4 alone, 74 genes were affected by IFNT in a P4-dependent manner, and 180 genes were regulated by IFNT in a P4-independent manner. In each study, an approximately equal number of genes were found to be activated or repressed in each group. Endometrial genes increased by pregnancy and P4 and/or IFNT include B2M, CTSL, CXCL10, G1P3, GRP, IFI27, IFIT1, IFITM3, LGALS15, MX1, POSTN, RSAD2, and STAT5A. Transcripts decreased by pregnancy and P4 and/or IFNT include COL3A1, LUM, PTMA, PUM1, RPL9, SPARC, and VIM. Identification and analysis of these hormonally responsive genes will help define endometrial pathways critical for uterine support of peri-implantation conceptus survival, growth, and implantation.


Biology of Reproduction | 2000

Prolactin Receptor and Uterine Milk Protein Expression in the Ovine Endometrium During the Estrous Cycle and Pregnancy

M. David Stewart; Greg A. Johnson; C. Allison Gray; Robert C. Burghardt; Linda A. Schuler; Margaret M. Joyce; Fuller W. Bazer; Thomas E. Spencer

Abstract Lactogenic hormones regulate epithelial proliferation, differentiation, and function in a variety of epitheliomesenchymal organs. During pregnancy, the ovine uterus is a potential site for endocrine and paracrine actions of lactogenic hormones in the form of pituitary prolactin (PRL) and placental lactogen (PL). These studies determined temporal and spatial alterations in PRL receptor (PRL-R) and expression of uterine milk proteins (UTMP), a marker of endometrial secretory activity, in the ovine endometrium during the estrous cycle and pregnancy. Slot-blot hybridization analysis indicated that steady-state levels of endometrial PRL-R mRNA increased during pregnancy. In situ hybridization and immunohistochemical analyses indicated that PRL-R mRNA and protein were exclusively expressed in the endometrial glandular epithelium (GE). No PRL-R mRNA expression was detected in luminal epithelium, stroma, myometrium, or conceptus trophectoderm. Reverse transcription-polymerase chain reaction analyses determined that the endometrial GE expressed both long and short alternative splice forms of the ovine PRL-R gene. Slot-blot hybridization analysis indicated that steady-state levels of intercaruncular endometrial UTMP mRNA increased about 3-fold between Days 20 and 60, increased another 3-fold between Days 60 and 80, and then declined slightly to Day 120. In pregnant ewes, UTMP mRNA expression was restricted to the endometrial GE in the stratum spongiosum (sGE), increased substantially between Days 15 and 17, and, between Days 17 to 50 of gestation, was markedly higher in upper than lower sGE. After Day 50, hyperplasia of the sGE was accompanied by increased UTMP mRNA expression by all sGE. Collectively, results indicate that 1) endometrial sGE is a primary target for actions of lactogenic hormones and 2) UTMP mRNA expression is correlated with PL production by the trophectoderm and state of sGE differentiation during pregnancy. It is proposed that activation of PRL-R signal transduction pathways by PRL and PL plays a major role in endometrial GE remodeling and differentiated function during pregnancy in support of conceptus growth and development.


Biology of Reproduction | 2000

Ovine Uterine Gland Knock-Out Model: Effects of Gland Ablation on the Estrous Cycle

C. Allison Gray; Frank F. Bartol; Kristin M. Taylor; Anne A. Wiley; W. Shawn Ramsey; Troy L. Ott; Fuller W. Bazer; Thomas E. Spencer

Abstract Ovine endometrial gland development is a postnatal event that can be inhibited epigenetically by chronic exposure of ewe lambs to a synthetic progestin from birth to puberty. As adults, these neonatally progestin-treated ewes lack endometrial glands and display a uterine gland knockout (UGKO) phenotype that is useful as a model for study of endometrial function. Here, objectives were to determine: 1) length of progestin exposure necessary from birth to produce the UGKO phenotype in ewes; 2) if UGKO ewes display normal estrous cycles; and 3) if UGKO ewes could establish and/or maintain pregnancy. Ewe lambs (n = 22) received a Norgestomet (Nor) implant at birth and every two weeks thereafter for 8 (Group I), 16 (Group II), or 32 (Groups III and IV) weeks. Control ewe lambs (n = 13) received no Nor treatment (Groups V and VI). Ewes in Groups I, II, III, and VI were hemihysterectomized (Hhx) at 16 weeks of age. After puberty, the remaining uterine horn in Hhx ewes was removed on either Day 9 or 15 of the estrous cycle (Day 0 = estrus). Histological analyses of uteri indicated that progestin exposure for 8, 16, or 32 weeks prevented endometrial adenogenesis and produced the UGKO phenotype in adult ewes. Three endometrial phenotypes were consistently observed in Nor-treated ewes: 1) no glands, 2) slight glandular invaginations into the stroma, and 3) limited numbers of cyst- or gland-like structures in the stroma. Overall patterns of uterine progesterone, estrogen, and oxytocin receptor expression were not different in uteri from adult cyclic control and UGKO ewes. However, receptor expression was variegated in the ruffled luminal epithelium of uteri from UGKO ewes. Intact UGKO ewes displayed altered estrous cycles with interestrous intervals of 17 to 43 days, and they responded to exogenous prostaglandin F2∝ (PGF) with luteolysis and behavioral estrus. During the estrous cycle, plasma concentrations of progesterone in intact control and UGKO ewes were not different during metestrus and diestrus, but levels did not decline in many UGKO ewes during late diestrus. Peak peripheral plasma concentrations of PGF metabolite, in response to an oxytocin challenge on Day 15, were threefold lower in UGKO compared to control ewes. Intact UGKO ewes bred repeatedly to intact rams did not display evidence of pregnancy based on results of ultrasound. Collectively, results indicate that 1) transient, progestin-induced disruption of ovine uterine development from birth alters both structural and functional integrity of the adult endometrium; 2) normal adult endometrial integrity, including uterine glands, is required to insure a luteolytic pattern of PGF production; and 3) the UGKO phenotype, characterized by the absence of endometrial glands and a compact, disorganized endometrial stroma, limits or inhibits the capacity of uterine tissues to support the establishment and/or maintenance of pregnancy.


Journal of Virology | 2003

Receptor Usage and Fetal Expression of Ovine Endogenous Betaretroviruses: Implications for Coevolution of Endogenous and Exogenous Retroviruses

Thomas E. Spencer; Manuela Mura; C. Allison Gray; Philip J. Griebel; Massimo Palmarini

ABSTRACT Betaretroviruses of sheep include two exogenous viruses, Jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV), and a group of endogenous viruses known as enJSRVs. The exogenous JSRV and ENTV are the etiological agents of ovine pulmonary adenocarcinoma (OPA) and enzootic nasal tumor (ENT), respectively. Sheep affected by OPA or ENT do not show an appreciable antibody response to JSRV or ENTV. Consequently, it is conceivable that enJSRV expression in the fetal lamb tolerizes sheep to the related exogenous viruses. In this study, possible mechanisms of interference between the sheep exogenous and endogenous betaretroviruses were investigated. In situ hybridization detected enJSRV RNAs in lymphoid cells associated with the lamina propria of the small intestine and in the thymus of sheep fetuses. Low-level expression of enJSRVs was also detected in the lungs. In addition, expression of enJSRVs was found to block entry of the exogenous JSRV, presumably via mechanisms of receptor interference. Indeed, enJSRVs, like JSRV and ENTV, were found to utilize hyaluronidase-2 as a cellular receptor.


Biology of Reproduction | 2000

Progesterone Modulation of Osteopontin Gene Expression in the Ovine Uterus

Greg A. Johnson; Thomas E. Spencer; Robert C. Burghardt; Kristin M. Taylor; C. Allison Gray; Fuller W. Bazer

Abstract Osteopontin (OPN) is an acidic phosphorylated glycoprotein component of the extracellular matrix that binds to integrins at the cell surface to promote cell-cell attachment and cell spreading. This matrix constituent is a ligand that could potentially bind integrins on trophectoderm and endometrium to facilitate superficial implantation and placentation. OPN mRNA increases in the endometrial glandular epithelium (GE) of early-pregnant ewes, and OPN protein is secreted into the uterine lumen. Therefore, progesterone and/or interferon-tau (IFNτ) may regulate OPN expression in the uterine GE. Cyclic ewes were ovariectomized and fitted with intrauterine (i.u.) catheters on Day 5 and treated daily with steroids (i.m.) and protein (i.u.) as follows: 1) progesterone (P, Days 5–24) and control serum proteins (CX, Days 11–24); 2) P and ZK 136.317 (ZK; progesterone receptor [PR] antagonist, Days 11–24) and CX proteins; 3) P and recombinant ovine IFNτ (roIFNτ, Days 11–24); or 4) P and ZK and roIFNτ. All ewes were hysterectomized on Day 25. Progesterone induced the expression of endometrial OPN mRNA in the GE and increased secretion of a 45-kDa OPN protein from endometrial explants maintained in culture for 24 h. Administration of ZK ablated progesterone effects. Intrauterine infusion of roIFNτ did not affect OPN gene expression or secretion in any of the steroid treatments. Interestingly, OPN mRNA-positive GE cells lacked detectable PR expression, although PR were detected in the stroma. Results indicate that progesterone regulates OPN expression in GE through a complex mechanism that includes PR down-regulation, and we suggest the possible involvement of a progesterone-induced stromal cell-derived growth factor(s) that acts as a progestamedin.


Biology of Reproduction | 2001

Effects of the Estrous Cycle, Pregnancy, and Interferon Tau on 2′,5′-Oligoadenylate Synthetase Expression in the Ovine Uterus

Greg A. Johnson; M. David Stewart; C. Allison Gray; Youngsok Choi; Robert C. Burghardt; Li-Yuan Yu-Lee; Fuller W. Bazer; Thomas E. Spencer

Abstract The enzymes which comprise the 2′,5′-oligoadenylate synthetase (OAS) family are interferon (IFN) stimulated genes which regulate ribonuclease L antiviral responses and may play additional roles in control of cellular growth and differentiation. This study characterized OAS expression in the endometrium of cyclic and pregnant ewes as well as determined effects of IFNτ and progesterone on OAS expression in cyclic or ovariectomized ewes and in endometrial epithelial and stromal cell lines. In cyclic ewes, low levels of OAS protein were detected in the endometrial stroma (S) and glandular epithelium (GE). In early pregnant ewes, OAS expression increased in the S and GE on Day 15. OAS expression in the lumenal epithelium (LE) was not detected in uteri from either cyclic or pregnant ewes. Intrauterine administration of IFNτ stimulated OAS expression in the S and GE, and this effect of IFNτ was dependent on progesterone. Ovine endometrial LE, GE, and S cell lines responded to IFNτ with induction of OAS proteins. In all three cell lines, the 40/46-kDa OAS forms were induced by IFNτ, whereas the 100-kDa OAS form appeared to be constitutively expressed and not affected by IFNτ. The 69/71-kDa OAS forms were induced by IFNτ in the S and GE cell lines, but not in the LE. Collectively, these results indicate that OAS expression in the endometrial S and GE of the early pregnant ovine uterus is directly regulated by IFNτ from conceptus and requires the presence of progesterone.


Journal of Virology | 2001

Expression of Endogenous Betaretroviruses in the Ovine Uterus: Effects of Neonatal Age, Estrous Cycle, Pregnancy, and Progesterone

Massimo Palmarini; C. Allison Gray; Karen D. Carpenter; Hung Fan; Fuller W. Bazer; Thomas E. Spencer

ABSTRACT The ovine genome contains 15 to 20 copies of endogenous retroviruses (enJSRVs) highly related to the oncogenic jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus. enJSRVs are highly expressed in the endometrial lumenal epithelia (LE) and glandular epithelia (GE) of the ovine uterus. The effects of neonatal age, estrous cycle, pregnancy, and progesterone on expression of enJSRVs in the ovine uterus were determined. Expression of enJSRV RNAs was absent from the uterus of ewes at birth, but enJSRV RNAs were expressed specifically in the LE and developing GE from postnatal day (PND) 7 to PND 56. In adult ewes, enJSRV RNAs were detected only in the epithelia of the uterine endometrium, as well as epithelia of the oviduct, cervix, and vagina. In cyclic ewes, endometrial enJSRV RNA abundance was lowest on day 1, increased 12-fold between days 1 and 13, and then decreased to day 15. In pregnant ewes, levels of endometrial enJSRV RNAs were high on day 11, increased to day 13, and then decreased to day 19. In day 17 and 19 conceptuses, enJSRV RNAs were also detected in binucleate cells of the trophectoderm. Immunoreactive JSRV capsid and envelope proteins were detected in the endometrial LE and GE, as well as in the binucleate cells of the conceptus. In transfection assays utilizing ovine endometrial LE cells, progesterone increased transcriptional activity of several enJSRV long terminal repeats. Collectively, these results indicate that transcription of enJSRVs in the endometrial epithelia of the ovine uterus is increased by progesterone and might support a role for enJSRVs in conceptus-endometrium interactions during the peri-implantation period and early placental morphogenesis.


Biology of Reproduction | 2000

Neonatal Ovine Uterine Development Involves Alterations in Expression of Receptors for Estrogen, Progesterone, and Prolactin

Kristin M. Taylor; C. Allison Gray; Margaret M. Joyce; M. David Stewart; Fuller W. Bazer; Thomas E. Spencer

Abstract Effects of age on uterine histoarchitecture, cell proliferation, and hormone receptor expression were determined for neonatal ewe lambs from birth (Postnatal Day [PND] 0) to PND 56. Uteri were histologically evaluated and proliferating cell nuclear antigen (PCNA), estrogen receptor alpha (ER-α), progesterone receptor (PR), and prolactin receptor (PRL-R) expression were characterized by in situ hybridization (ISH), immunohistochemistry, or both. The most striking feature of neonatal uterine development was the genesis and development of glands in the intercaruncular areas of endometrium. After birth, endometrial glandular epithelium (GE) budded and differentiated into the underlying stroma from the luminal epithelium (LE) between PNDs 1 and 7. Between PNDs 14 and 56, extensive coiling and branching morphogenesis of nascent endometrial glands occurred. By PND 56, the uterine wall appeared to be histoarchitecturally mature. At birth, nuclear PCNA protein was strongly detected in LE. Between PNDs 7 and 56, high levels of PCNA, ER-α, and PR gene expression were detected in both nascent and developing GE. Higher levels of PCNA and ER-α expression were detected in GE at the tips of developing glands as well as in the surrounding stroma. Progesterone was below detectable limits in serum. Serum estradiol-17β levels were high on PND 1, increased from PNDs 14 to 28, and declined from PND 42 to PND 56. Serum PRL levels increased from PNDs 1 to 14 and declined thereafter. Using ISH and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, expression of mRNAs for short and long forms of the ovine PRL-R were first detected in nascent GE on PND 7 and increased between PNDs 7 and 56 in proliferating and differentiating GE. These results indicate that 1) uterine gland genesis is initiated between PNDs 1 and 7 after birth and is essentially completed by PND 56; 2) neonatal uterine morphogenesis involves temporal and spatial alterations in cell proliferation and ER-α, PR, and PRL-R gene expression; 3) PRL-R expression is a unique marker of GE differentiation and proliferation; and 4) serum estradiol-17β and PRL levels increase during the onset of GE tubular branching morphogenesis. Results support the hypothesis that neonatal ovine uterine development involves epithelial PRL-R and ER-α activation to stimulate and maintain endometrial gland genesis and branching morphogenesis.

Collaboration


Dive into the C. Allison Gray's collaboration.

Researchain Logo
Decentralizing Knowledge