Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Dana Nelson is active.

Publication


Featured researches published by C. Dana Nelson.


Frontiers in Plant Science | 2014

Duplications and losses in gene families of rust pathogens highlight putative effectors.

Amanda Pendleton; Katherine E. Smith; Nicolas Feau; Francis L. Martin; Igor V. Grigoriev; Richard C. Hamelin; C. Dana Nelson; J. Gordon Burleigh; John M. Davis

Rust fungi are a group of fungal pathogens that cause some of the worlds most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the hosts cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.


Genetics | 2006

Association genetics in Pinus taeda L. I. wood property traits

Santiago C. González-Martínez; Nicholas C. Wheeler; Elhan S. Ersoz; C. Dana Nelson; David B. Neale

Genetic association is a powerful method for dissecting complex adaptive traits due to (i) fine-scale mapping resulting from historical recombination, (ii) wide coverage of phenotypic and genotypic variation within a single experiment, and (iii) the simultaneous discovery of loci and alleles. In this article, genetic association among single nucleotide polymorphisms (58 SNPs) from 20 wood- and drought-related candidate genes and an array of wood property traits with evolutionary and commercial importance, namely, earlywood and latewood specific gravity, percentage of latewood, earlywood microfibril angle, and wood chemistry (lignin and cellulose content), was tested using mixed linear models (MLMs) that account for relatedness among individuals by using a pairwise kinship matrix. Population structure, a common systematic bias in association studies, was assessed using 22 nuclear microsatellites. Different phenotype:genotype associations were found, some of them confirming previous evidence from collocation of QTL and genes in linkage maps (for example, 4cl and percentage of latewood) and two that involve nonsynonymous polymorphisms (cad SNP M28 with earlywood specific gravity and 4cl SNP M7 with percentage of latewood). The strongest genetic association found in this study was between allelic variation in α-tubulin, a gene involved in the formation of cortical microtubules, and earlywood microfibril angle. Intragenic LD decays rapidly in conifers; thus SNPs showing genetic association are likely to be located in close proximity to the causative polymorphisms. This first multigene association genetic study in forest trees has shown the feasibility of candidate gene strategies for dissecting complex adaptive traits, provided that genes belonging to key pathways and appropriate statistical tools are used. This approach is of particular utility in species such as conifers, where genomewide strategies are limited by their large genomes.


Genetics | 2010

Patterns of Population Structure and Environmental Associations to Aridity Across the Range of Loblolly Pine (Pinus taeda L., Pinaceae)

Andrew J. Eckert; Joost van Heerwaarden; Jill L. Wegrzyn; C. Dana Nelson; Jeffrey Ross-Ibarra; Santiago C. González-Martínez; David B. Neale

Natural populations of forest trees exhibit striking phenotypic adaptations to diverse environmental gradients, thereby making them appealing subjects for the study of genes underlying ecologically relevant phenotypes. Here, we use a genome-wide data set of single nucleotide polymorphisms genotyped across 3059 functional genes to study patterns of population structure and identify loci associated with aridity across the natural range of loblolly pine (Pinus taeda L.). Overall patterns of population structure, as inferred using principal components and Bayesian cluster analyses, were consistent with three genetic clusters likely resulting from expansions out of Pleistocene refugia located in Mexico and Florida. A novel application of association analysis, which removes the confounding effects of shared ancestry on correlations between genetic and environmental variation, identified five loci correlated with aridity. These loci were primarily involved with abiotic stress response to temperature and drought. A unique set of 24 loci was identified as FST outliers on the basis of the genetic clusters identified previously and after accounting for expansions out of Pleistocene refugia. These loci were involved with a diversity of physiological processes. Identification of nonoverlapping sets of loci highlights the fundamental differences implicit in the use of either method and suggests a pluralistic, yet complementary, approach to the identification of genes underlying ecologically relevant phenotypes.


PLOS ONE | 2009

Evolution of Genome Size and Complexity in Pinus

Alison M. Morse; Daniel G. Peterson; M. Nurul Islam-Faridi; Katherine E. Smith; Zenaida V. Magbanua; Saul A. Garcia; Thomas L. Kubisiak; Henry V. Amerson; John E. Carlson; C. Dana Nelson; John M. Davis

Background Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. Methodology/Principal Findings Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. Conclusions/Significance Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes.


New Phytologist | 2013

A conceptual framework for restoration of threatened plants: the effective model of American chestnut (Castanea dentata) reintroduction.

Douglass F. Jacobs; Harmony J. Dalgleish; C. Dana Nelson

We propose a conceptual framework for restoration of threatened plant species that encourages integration of technological, ecological, and social spheres. A sphere encompasses ideas relevant to restoration and the people working within similar areas of influence or expertise. Increased capacity within a sphere and a higher degree of coalescing among spheres predict a greater probability of successful restoration. We illustrate this with Castanea dentata, a foundation forest tree in North America that was annihilated by an introduced pathogen; the species is a model that effectively merges biotechnology, reintroduction biology, and restoration ecology. Because of C. dentatas ecological and social importance, scientists have aggressively pursued blight resistance through various approaches. We summarize recent advancements in tree breeding and biotechnology that have emerged from C. dentata research, and describe their potential to bring new tools to bear on socio-ecological restoration problems. Successful reintroduction of C. dentata will also depend upon an enhanced understanding of its ecology within contemporary forests. We identify a critical need for a deeper understanding of societal influences that may affect setting and achieving realistic restoration goals. Castanea dentata may serve as an important model to inform reintroduction of threatened plant species in general and foundation forest trees in particular.


BMC Genetics | 2011

An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

Craig S. Echt; Surya Saha; Konstantin V. Krutovsky; Kokulapalan Wimalanathan; John E. Erpelding; Chun Liang; C. Dana Nelson

BackgroundPrevious loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety of sources and published cDNA markers into a composite P. taeda genetic map constructed from two reference mapping pedigrees. A dense genetic map that incorporates SSR loci will benefit complete pine genome sequencing, pine population genetics studies, and pine breeding programs. Careful marker annotation using a variety of references further enhances the utility of the integrated SSR map.ResultsThe updated P. taeda genetic map, with an estimated genome coverage of 1,515 cM(Kosambi) across 12 linkage groups, incorporated 170 new SSR markers and 290 previously reported SSR, RFLP, and ESTP markers. The average marker interval was 3.1 cM. Of 233 mapped SSR loci, 84 were from cDNA-derived sequences (EST-SSRs) and 149 were from non-transcribed genomic sequences (genomic-SSRs). Of all 311 mapped cDNA-derived markers, 77% were associated with NCBI Pta UniGene clusters, 67% with RefSeq proteins, and 62% with functional Gene Ontology (GO) terms. Duplicate (i.e., redundant accessory) and paralogous markers were tentatively identified by evaluating marker sequences by their UniGene cluster IDs, clone IDs, and relative map positions. The average gene diversity, He , among polymorphic SSR loci, including those that were not mapped, was 0.43 for 94 EST-SSRs and 0.72 for 83 genomic-SSRs. The genetic map can be viewed and queried at http://www.conifergdb.org/pinemap.ConclusionsMany polymorphic and genetically mapped SSR markers are now available for use in P. taeda population genetics, studies of adaptive traits, and various germplasm management applications. Annotating mapped genes with UniGene clusters and GO terms allowed assessment of redundant and paralogous EST markers and further improved the quality and utility of the genetic map for P. taeda.


PLOS ONE | 2011

Adventures in the Enormous: A 1.8 Million Clone BAC Library for the 21.7 Gb Genome of Loblolly Pine

Zenaida V. Magbanua; Seval Ozkan; Benjamin D. Bartlett; Philippe Chouvarine; Christopher A. Saski; Aaron Liston; Richard Cronn; C. Dana Nelson; Daniel G. Peterson

Loblolly pine (LP; Pinus taeda L.) is the most economically important tree in the U.S. and a cornerstone species in southeastern forests. However, genomics research on LP and other conifers has lagged behind studies on flowering plants due, in part, to the large size of conifer genomes. As a means to accelerate conifer genome research, we constructed a BAC library for the LP genotype 7-56. The LP BAC library consists of 1,824,768 individually-archived clones making it the largest single BAC library constructed to date, has a mean insert size of 96 kb, and affords 7.6X coverage of the 21.7 Gb LP genome. To demonstrate the efficacy of the library in gene isolation, we screened macroarrays with overgos designed from a pine EST anchored on LP chromosome 10. A positive BAC was sequenced and found to contain the expected full-length target gene, several gene-like regions, and both known and novel repeats. Macroarray analysis using the retrotransposon IFG-7 (the most abundant repeat in the sequenced BAC) as a probe indicates that IFG-7 is found in roughly 210,557 copies and constitutes about 5.8% or 1.26 Gb of LP nuclear DNA; this DNA quantity is eight times the Arabidopsis genome. In addition to its use in genome characterization and gene isolation as demonstrated herein, the BAC library should hasten whole genome sequencing of LP via next-generation sequencing strategies/technologies and facilitate improvement of trees through molecular breeding and genetic engineering. The library and associated products are distributed by the Clemson University Genomics Institute (www.genome.clemson.edu).


Canadian Journal of Forest Research | 2010

Assessment of beech scale resistance in full- and half-sibling American beech families

Jennifer L. Koch; David W. Carey; Mary E. Mason; C. Dana Nelson

A beech bark disease infested American beech tree (Fagus grandifolia Ehrh.) and two uninfested trees were selected in a mature natural stand in Michigan, USA, and mated to form two full-sib families for evaluating the inheritance of resistance to beech scale (Cryptococcus fagisuga Lind.), the insect element of beech bark disease. Four half-sib families from both infested and uninfested trees were also evaluated for resistance. Using an artificial infestation technique, adult and egg count data were collected over 2 years and analyzed with generalized linear mixed methods to account for nonnormal distributions of the response variables. A significant effect for family was found for each variable. Family least squares means were computed as a measure of resistance and repeatabilities were calculated to provide an upper limit estimate of broad-sense heritability. The two families that ranked highest for resistance were the full-sib family from two uninfested parents and the half-sib family from a stand where all diseased trees had been removed. Together, the results suggest that selection and breeding may be an effective means to improve populations for artificial regeneration, and silvicultural treatments may provide an effective management option for mitigating beech bark disease through managing the genetic composition of natural regeneration.


Phytopathology | 2005

Genetic Interaction of the Fusiform Rust Fungus with Resistance Gene Fr1 in Loblolly Pine

Thomas L. Kubisiak; Henry V. Amerson; C. Dana Nelson

ABSTRACT We propose a method for defining DNA markers linked to Cronartium quercuum f. sp. fusiforme avirulence (Avr) genes. However, before this method can be successfully employed, a spore competition study was needed to determine the genetic composition of single pycnial drops and multiple drops on single galls when using the standard inoculation procedure, whether virulent (avr1) basidiospores ever predispose some resistant (Fr1/fr1) trees to infection by avirulent (Avr1) basidiospores, and whether avr1 and Avr1 basidiospores equally infect susceptible (fr1/fr1) trees. Results of this study suggest that multiple infections within a single gall are common using the concentrated basidiospore system, resulting on average in >4 infection events per tree. Due to multiple infections within a single gall, an individual pycnial drop cannot be assumed to consist of spores from only a single haploid pycnium. Roughly 57% of the drops harvested were found to consist of more than one haploid genotype, most likely due to the physical mixing of spores from genetically different pycnia. Most importantly, although multiple infections do occur in the formation of a single gall, there is no evidence to suggest that the genetics of the proposed gene-for-gene interaction are compromised. Only avr1 basidiospores were observed to cause infection on Fr1/fr1 trees, whereas both avr1 and Avr1 basidiospores were observed to cause infection on fr1/fr1 trees, albeit not at equal frequencies.


Theoretical and Applied Genetics | 2004

Pine genes regulated by the necrotrophic pathogen Fusarium circinatum.

Alison M. Morse; C. Dana Nelson; Sarah F. Covert; Angela G. Holliday; Katherine E. Smith; John M. Davis

A targeted genomics approach was used to construct a cDNA array of potential pathogen-regulated genes for investigating host–pathogen interactions in pine trees (Pinus species). This array, containing a nonredundant set of 311 cDNAs, was assembled by combining smaller sets of cDNAs generated by differential display or suppression subtraction hybridization using a variety of pathogen treatments and elicitors. The array was probed to identify host genes regulated by Fusarium circinatum, a necrotrophic fungus that incites pitch canker disease on pine stems. A set of 29 cDNAs were induced during the disease state. Notably, cDNAs on the array that were derived from experiments with fusiform rust, incited by Cronartium quercuum f. sp. fusiforme (a biotrophic fungus) were unregulated by Fusarium. The results imply distinct genetic responses in pine to diseases incited by necrotrophs and biotrophs. This cDNA collection expands the genomics toolkit for understanding interactions between conifers and their microbial associates in forest ecosystems.

Collaboration


Dive into the C. Dana Nelson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas L. Kubisiak

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Sedley Josserand

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Craig S. Echt

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

David B. Neale

University of California

View shared research outputs
Top Co-Authors

Avatar

Henry V. Amerson

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin M. Potter

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge