Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. David Weaver is active.

Publication


Featured researches published by C. David Weaver.


Molecular Pharmacology | 2008

Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4

Colleen M. Niswender; Kari A. Johnson; C. David Weaver; Carrie K. Jones; Zixiu Xiang; Qingwei Luo; Alice L. Rodriguez; Joy E. Marlo; Tomas de Paulis; Analisa D. Thompson; Emily Days; Tasha Nalywajko; Cheryl A. Aust; Michael Baxter Williams; Jennifer E. Ayala; Richard Williams; Craig W. Lindsley; P. Jeffrey Conn

Parkinsons disease (PD) is caused by the death of dopamine neurons in the basal ganglia and results in motor symptoms such as tremor and bradykinesia. Activation of metabotropic glutamate receptor 4 (mGluR4) has been shown to modulate neurotransmission in the basal ganglia and results in antiparkinsonian effects in rodent PD models. N-Phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) is a positive allosteric modulator (PAM) of mGluR4 that has been used to further validate the role of mGluR4 in PD, but the compound suffers from a lack of selectivity, relatively low potency, and poor solubility. Via high-throughput screening, we discovered more than 400 novel PAMs of mGluR4. Compounds derived from a novel chemical scaffold were characterized in vitro at both rat and human mGluR4 using two distinct assays of mGluR4 function. The lead compound was approximately 8-fold more potent than PHCCC, enhanced the potency of glutamate at mGluR4 by 8-fold, and did not show any significant potentiator or antagonist activity at other mGluR subtypes. Resolution of the regioisomers of the lead revealed that the cis regioisomer, (±)-cis-2-(3,5-dichlorphenylcarbamoyl)cyclohexanecarboxylic acid (VU0155041), contained the majority of the mGluR4 PAM activity and also exhibited partial agonist activity at mGluR4 at a site that was distinct from the glutamate binding site, suggesting that this compound is a mixed allosteric agonist/PAM of mGluR4. VU0155041 was soluble in an aqueous vehicle, and intracerebroventricular administration of 31 to 316 nmol of VU0155041 dose-dependently decreased haloperidol-induced catalepsy and reserpine-induced akinesia in rats. These exciting results provide continued support for mGluR4 as a therapeutic target in PD.


Molecular Pharmacology | 2010

Discovery of Novel Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5 Reveals Chemical and Functional Diversity and In Vivo Activity in Rat Behavioral Models of Anxiolytic and Antipsychotic Activity

Alice L. Rodriguez; Mark D. Grier; Carrie K. Jones; Elizabeth J. Herman; Alexander S. Kane; Randy L. Smith; Richard Williams; Ya Zhou; Joy E. Marlo; Emily Days; Tasha N. Blatt; Satyawan Jadhav; Usha N. Menon; Paige N. Vinson; Jerri M. Rook; Shaun R. Stauffer; Colleen M. Niswender; Craig W. Lindsley; C. David Weaver; P. Jeffrey Conn

Modulators of metabotropic glutamate receptor subtype 5 (mGluR5) may provide novel treatments for multiple central nervous system (CNS) disorders, including anxiety and schizophrenia. Although compounds have been developed to better understand the physiological roles of mGluR5 and potential usefulness for the treatment of these disorders, there are limitations in the tools available, including poor selectivity, low potency, and limited solubility. To address these issues, we developed an innovative assay that allows simultaneous screening for mGluR5 agonists, antagonists, and potentiators. We identified multiple scaffolds that possess diverse modes of activity at mGluR5, including both positive and negative allosteric modulators (PAMs and NAMs, respectively). 3-Fluoro-5-(3-(pyridine-2-yl)-1,2,4-oxadiazol-5-yl)benzonitrile (VU0285683) was developed as a novel selective mGluR5 NAM with high affinity for the 2-methyl-6-(phenylethynyl)-pyridine (MPEP) binding site. VU0285683 had anxiolytic-like activity in two rodent models for anxiety but did not potentiate phencyclidine-induced hyperlocomotor activity. (4-Hydroxypiperidin-1-yl)(4-phenylethynyl)phenyl)methanone (VU0092273) was identified as a novel mGluR5 PAM that also binds to the MPEP site. VU0092273 was chemically optimized to an orally active analog, N-cyclobutyl-6-((3-fluorophenyl)ethynyl)nicotinamide hydrochloride (VU0360172), which is selective for mGluR5. This novel mGluR5 PAM produced a dose-dependent reversal of amphetamine-induced hyperlocomotion, a rodent model predictive of antipsychotic activity. Discovery of structurally and functionally diverse allosteric modulators of mGluR5 that demonstrate in vivo efficacy in rodent models of anxiety and antipsychotic activity provide further support for the tremendous diversity of chemical scaffolds and modes of efficacy of mGluR5 ligands. In addition, these studies provide strong support for the hypothesis that multiple structurally distinct mGluR5 modulators have robust activity in animal models that predict efficacy in the treatment of CNS disorders.


Journal of Biological Chemistry | 2011

Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels.

Melissa Miller; Jie Shi; Yingmin Zhu; Maksym Kustov; Jinbin Tian; Amy Stevens; Meng Wu; Jia Xu; Shunyou Long; Pu Yang; Alexander Zholos; James M. Salovich; C. David Weaver; Corey R. Hopkins; Craig W. Lindsley; Owen B. McManus; Min Li; Michael X. Zhu

Transient receptor potential canonical (TRPC) channels are Ca2+-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca2+ rise in response to stimulation of mouse TRPC4β by μ-opioid receptors. ML204 inhibited TRPC4β-mediated intracellular Ca2+ rise with an IC50 value of 0.96 μm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4β currents activated through either μ-opioid receptor stimulation or intracellular dialysis of guanosine 5′-3-O-(thio)triphosphate (GTPγS), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10–20 μm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTPγS, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4.


Journal of Biomolecular Screening | 2004

A Thallium-Sensitive, Fluorescence-Based Assay for Detecting and Characterizing Potassium Channel Modulators in Mammalian Cells

C. David Weaver; David G. Harden; Steven I. Dworetzky; Barbara J. Robertson; Ronald J. Knox

Potassium channels have been identified as targets for a large number of therapeutic indications. The ability to use a high-throughput functional assay for the detection and characterization of small-molecule modulators of potassium channels is very desirable. However, present techniques capable of screening very large chemical libraries are limited in terms of data quality, temporal resolution, ease of use, and requirements for specialized instrumentation. To address these issues, the authors have developed a fluorescence-based thalliumflux assay. This assay is capable of detectingmodulators of both voltageand ligand-gated potassium channels expressed inmammalian cells. The thalliumflux assay can use instruments standard to most high-throughput screening laboratories, and using such equipment has been successfully employed to screen large chemical libraries consisting of hundreds of thousands of compounds.


Molecular Pharmacology | 2009

Discovery and Characterization of Novel Allosteric Potentiators of M1 Muscarinic Receptors Reveals Multiple Modes of Activity

Joy E. Marlo; Colleen M. Niswender; Emily Days; Thomas M. Bridges; Yun Xiang; Alice L. Rodriguez; Jana K. Shirey; Ashley E. Brady; Tasha Nalywajko; Qingwei Luo; Cheryl A. Austin; Michael Baxter Williams; Kwangho Kim; Richard Williams; Darren Orton; H. Alex Brown; Craig W. Lindsley; C. David Weaver; P. Jeffrey Conn

Activators of M1 muscarinic acetylcholine receptors (mAChRs) may provide novel treatments for schizophrenia and Alzheimers disease. Unfortunately, the development of M1-active compounds has resulted in nonselective activation of the highly related M2 to M5 mAChR subtypes, which results in dose-limiting side effects. Using a functional screening approach, we identified several novel ligands that potentiated agonist activation of M1 with low micromolar potencies and induced 5-fold or greater leftward shifts of the acetylcholine (ACh) concentration-response curve. These ligands did not compete for binding at the ACh binding site, indicating that they modulate receptor activity by binding to allosteric sites. The two most selective compounds, cyclopentyl 1,6-dimethyl-4-(6-nitrobenzo[d][1,3]-dioxol-5-yl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (VU0090157) and (E)-2-(4-ethoxyphenylamino)-N′-((2-hydroxynaphthalen-1-yl)methylene)acetohydrazide (VU0029767), induced progressive shifts in ACh affinity at M1 that were consistent with their effects in a functional assay, suggesting that the mechanism for enhancement of M1 activity by these compounds is by increasing agonist affinity. These compounds were strikingly different, however, in their ability to potentiate responses at a mutant M1 receptor with decreased affinity for ACh and in their ability to affect responses of the allosteric M1 agonist, 1-[1′-(2-tolyl)-1,4′-bipiperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one. Furthermore, these two compounds were distinct in their abilities to potentiate M1-mediated activation of phosphoinositide hydrolysis and phospholipase D. The discovery of multiple structurally distinct positive allosteric modulators of M1 is an exciting advance in establishing the potential of allosteric modulators for selective activation of this receptor. These data also suggest that structurally diverse M1 potentiators may act by distinct mechanisms and differentially regulate receptor coupling to downstream signaling pathways.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Small-molecule screen identifies inhibitors of the neuronal K-Cl cotransporter KCC2

Eric Delpire; Emily Days; L. Michelle Lewis; Dehui Mi; Kwangho Kim; Craig W. Lindsley; C. David Weaver

KCC2, a neuronal-specific K-Cl cotransporter, plays a major role in maintaining intracellular Cl− concentration in neurons below its electrochemical equilibrium potential, thus favoring robust GABA hyperpolarizing or inhibitory responses. The pharmacology of the K-Cl cotransporter is dominated by loop diuretics such as furosemide and bumetanide, molecules used in clinical medicine because they inhibit the loop of Henle Na-K-2Cl cotransporter with much higher affinity. To identify molecules that affect KCC2 activity, we developed a fluorescence-based assay suitable for high-throughput screening (HTS) and used the assay to screen a library of 234,000 small molecules. We identified a large number of molecules that either decrease or increase the activity of the cotransporter. Here, we report the characterization of a small number of inhibitors, some of which inhibit KCC2 activity in the submicomolar range without substantially affecting NKCC1 activity. Using medicinal chemistry, we synthesized a number of variants, tested their effect on KCC2 function, and provide an analysis of structure/activity relationships. We also used one of the compounds to demonstrate competitive inhibition in regard to external [K+] versus noncompetitive inhibition in respect to external [Cl−].


Molecular Pharmacology | 2012

Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function.

Meredith J. Noetzel; Jerri M. Rook; Paige N. Vinson; Hyekyung P. Cho; Emily Days; Ya Zhou; Alice L. Rodriguez; Hilde Lavreysen; Shaun R. Stauffer; Colleen M. Niswender; Zixiu Xiang; J. Scott Daniels; Carrie K. Jones; Craig W. Lindsley; C. David Weaver; P. Jeffrey Conn

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have emerged as an exciting new approach for the treatment of schizophrenia and other central nervous system (CNS) disorders. Of interest, some mGlu5 PAMs act as pure PAMs, only potentiating mGlu5 responses to glutamate whereas others [allosteric agonists coupled with PAM activity (ago-PAMs)] potentiate responses to glutamate and have intrinsic allosteric agonist activity in mGlu5-expressing cell lines. All mGlu5 PAMs previously shown to have efficacy in animal models act as ago-PAMs in cell lines, raising the possibility that allosteric agonist activity is critical for in vivo efficacy. We have now optimized novel mGlu5 pure PAMs that are devoid of detectable agonist activity and structurally related mGlu5 ago-PAMs that activate mGlu5 alone in cell lines. Studies of mGlu5 PAMs in cell lines revealed that ago-PAM activity is dependent on levels of mGlu5 receptor expression in human embryonic kidney 293 cells, whereas PAM potency is relatively unaffected by levels of receptor expression. Furthermore, ago-PAMs have no agonist activity in the native systems tested, including cortical astrocytes and subthalamic nucleus neurons and in measures of long-term depression at the hippocampal Schaffer collateral-CA1 synapse. Finally, studies with pure PAMs and ago-PAMs chemically optimized to provide comparable CNS exposure revealed that both classes of mGlu5 PAMs have similar efficacy in a rodent model predictive of antipsychotic activity. These data suggest that the level of receptor expression influences the ability of mGlu5 PAMs to act as allosteric agonists in vitro and that ago-PAM activity observed in cell-based assays may not be important for in vivo efficacy.


FEBS Letters | 1991

Protein phosphorylation stimulates the rate of malate uptake across the peribacteroid membrane of soybean nodules

Li-Jun Ouyang; James Whelan; C. David Weaver; Daniel M. Roberts; David A. Day

It is suggested that the rate of malate uptake across the peribacteroid membrane is controlled by phosphorylation of nodulin 26.


Molecular Pharmacology | 2009

High-Throughput Screening Reveals a Small-Molecule Inhibitor of the Renal Outer Medullary Potassium Channel and Kir7.1

L. Michelle Lewis; Gautam Bhave; Brian A. Chauder; Sreedatta Banerjee; Katharina A. Lornsen; Rey Redha; Katherine Fallen; Craig W. Lindsley; C. David Weaver; Jerod S. Denton

The renal outer medullary potassium channel (ROMK) is expressed in the kidney tubule and critically regulates sodium and potassium balance. The physiological functions of other inward rectifying K+ (Kir) channels expressed in the nephron, such as Kir7.1, are less well understood in part due to the lack of selective pharmacological probes targeting inward rectifiers. In an effort to identify Kir channel probes, we performed a fluorescence-based, high-throughput screen (HTS) of 126,009 small molecules for modulators of ROMK function. Several antagonists were identified in the screen. One compound, termed VU590, inhibits ROMK with submicromolar affinity, but has no effect on Kir2.1 or Kir4.1. Low micromolar concentrations inhibit Kir7.1, making VU590 the first small-molecule inhibitor of Kir7.1. Structure-activity relationships of VU590 were defined using small-scale parallel synthesis. Electrophysiological analysis indicates that VU590 is an intracellular pore blocker. VU590 and other compounds identified by HTS will be instrumental in defining Kir channel structure, physiology, and therapeutic potential.


Journal of Medicinal Chemistry | 2009

Discovery of the First Highly M5-Preferring Muscarinic Acetylcholine Receptor Ligand, an M5 Positive Allosteric Modulator Derived from a Series of 5-Trifluoromethoxy N-Benzyl Isatins

Thomas M. Bridges; Joy E. Marlo; Colleen M. Niswender; Carrie K. Jones; Satyawan Jadhav; Patrick R. Gentry; Hyekyung C. Plumley; C. David Weaver; P. Jeffrey Conn; Craig W. Lindsley

This report describes the discovery and initial characterization of the first positive allosteric modulator of muscarinic acetylcholine receptor subtype 5 (mAChR5 or M5). Functional HTS, identified VU0119498, which displayed micromolar potencies for potentiation of acetylcholine at M1, M3, and M5 receptors in cell-based Ca(2+) mobilization assays. Subsequent optimization led to the discovery of VU0238429, which possessed an EC(50) of approximately 1.16 microM at M5 with >30-fold selectivity versus M1 and M3, with no M2 or M4 potentiator activity.

Collaboration


Dive into the C. David Weaver's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Scott Daniels

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge