Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Emily Days is active.

Publication


Featured researches published by Emily Days.


Molecular Pharmacology | 2008

Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4

Colleen M. Niswender; Kari A. Johnson; C. David Weaver; Carrie K. Jones; Zixiu Xiang; Qingwei Luo; Alice L. Rodriguez; Joy E. Marlo; Tomas de Paulis; Analisa D. Thompson; Emily Days; Tasha Nalywajko; Cheryl A. Aust; Michael Baxter Williams; Jennifer E. Ayala; Richard Williams; Craig W. Lindsley; P. Jeffrey Conn

Parkinsons disease (PD) is caused by the death of dopamine neurons in the basal ganglia and results in motor symptoms such as tremor and bradykinesia. Activation of metabotropic glutamate receptor 4 (mGluR4) has been shown to modulate neurotransmission in the basal ganglia and results in antiparkinsonian effects in rodent PD models. N-Phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) is a positive allosteric modulator (PAM) of mGluR4 that has been used to further validate the role of mGluR4 in PD, but the compound suffers from a lack of selectivity, relatively low potency, and poor solubility. Via high-throughput screening, we discovered more than 400 novel PAMs of mGluR4. Compounds derived from a novel chemical scaffold were characterized in vitro at both rat and human mGluR4 using two distinct assays of mGluR4 function. The lead compound was approximately 8-fold more potent than PHCCC, enhanced the potency of glutamate at mGluR4 by 8-fold, and did not show any significant potentiator or antagonist activity at other mGluR subtypes. Resolution of the regioisomers of the lead revealed that the cis regioisomer, (±)-cis-2-(3,5-dichlorphenylcarbamoyl)cyclohexanecarboxylic acid (VU0155041), contained the majority of the mGluR4 PAM activity and also exhibited partial agonist activity at mGluR4 at a site that was distinct from the glutamate binding site, suggesting that this compound is a mixed allosteric agonist/PAM of mGluR4. VU0155041 was soluble in an aqueous vehicle, and intracerebroventricular administration of 31 to 316 nmol of VU0155041 dose-dependently decreased haloperidol-induced catalepsy and reserpine-induced akinesia in rats. These exciting results provide continued support for mGluR4 as a therapeutic target in PD.


Molecular Pharmacology | 2010

Discovery of Novel Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5 Reveals Chemical and Functional Diversity and In Vivo Activity in Rat Behavioral Models of Anxiolytic and Antipsychotic Activity

Alice L. Rodriguez; Mark D. Grier; Carrie K. Jones; Elizabeth J. Herman; Alexander S. Kane; Randy L. Smith; Richard Williams; Ya Zhou; Joy E. Marlo; Emily Days; Tasha N. Blatt; Satyawan Jadhav; Usha N. Menon; Paige N. Vinson; Jerri M. Rook; Shaun R. Stauffer; Colleen M. Niswender; Craig W. Lindsley; C. David Weaver; P. Jeffrey Conn

Modulators of metabotropic glutamate receptor subtype 5 (mGluR5) may provide novel treatments for multiple central nervous system (CNS) disorders, including anxiety and schizophrenia. Although compounds have been developed to better understand the physiological roles of mGluR5 and potential usefulness for the treatment of these disorders, there are limitations in the tools available, including poor selectivity, low potency, and limited solubility. To address these issues, we developed an innovative assay that allows simultaneous screening for mGluR5 agonists, antagonists, and potentiators. We identified multiple scaffolds that possess diverse modes of activity at mGluR5, including both positive and negative allosteric modulators (PAMs and NAMs, respectively). 3-Fluoro-5-(3-(pyridine-2-yl)-1,2,4-oxadiazol-5-yl)benzonitrile (VU0285683) was developed as a novel selective mGluR5 NAM with high affinity for the 2-methyl-6-(phenylethynyl)-pyridine (MPEP) binding site. VU0285683 had anxiolytic-like activity in two rodent models for anxiety but did not potentiate phencyclidine-induced hyperlocomotor activity. (4-Hydroxypiperidin-1-yl)(4-phenylethynyl)phenyl)methanone (VU0092273) was identified as a novel mGluR5 PAM that also binds to the MPEP site. VU0092273 was chemically optimized to an orally active analog, N-cyclobutyl-6-((3-fluorophenyl)ethynyl)nicotinamide hydrochloride (VU0360172), which is selective for mGluR5. This novel mGluR5 PAM produced a dose-dependent reversal of amphetamine-induced hyperlocomotion, a rodent model predictive of antipsychotic activity. Discovery of structurally and functionally diverse allosteric modulators of mGluR5 that demonstrate in vivo efficacy in rodent models of anxiety and antipsychotic activity provide further support for the tremendous diversity of chemical scaffolds and modes of efficacy of mGluR5 ligands. In addition, these studies provide strong support for the hypothesis that multiple structurally distinct mGluR5 modulators have robust activity in animal models that predict efficacy in the treatment of CNS disorders.


Molecular Pharmacology | 2009

Discovery and Characterization of Novel Allosteric Potentiators of M1 Muscarinic Receptors Reveals Multiple Modes of Activity

Joy E. Marlo; Colleen M. Niswender; Emily Days; Thomas M. Bridges; Yun Xiang; Alice L. Rodriguez; Jana K. Shirey; Ashley E. Brady; Tasha Nalywajko; Qingwei Luo; Cheryl A. Austin; Michael Baxter Williams; Kwangho Kim; Richard Williams; Darren Orton; H. Alex Brown; Craig W. Lindsley; C. David Weaver; P. Jeffrey Conn

Activators of M1 muscarinic acetylcholine receptors (mAChRs) may provide novel treatments for schizophrenia and Alzheimers disease. Unfortunately, the development of M1-active compounds has resulted in nonselective activation of the highly related M2 to M5 mAChR subtypes, which results in dose-limiting side effects. Using a functional screening approach, we identified several novel ligands that potentiated agonist activation of M1 with low micromolar potencies and induced 5-fold or greater leftward shifts of the acetylcholine (ACh) concentration-response curve. These ligands did not compete for binding at the ACh binding site, indicating that they modulate receptor activity by binding to allosteric sites. The two most selective compounds, cyclopentyl 1,6-dimethyl-4-(6-nitrobenzo[d][1,3]-dioxol-5-yl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (VU0090157) and (E)-2-(4-ethoxyphenylamino)-N′-((2-hydroxynaphthalen-1-yl)methylene)acetohydrazide (VU0029767), induced progressive shifts in ACh affinity at M1 that were consistent with their effects in a functional assay, suggesting that the mechanism for enhancement of M1 activity by these compounds is by increasing agonist affinity. These compounds were strikingly different, however, in their ability to potentiate responses at a mutant M1 receptor with decreased affinity for ACh and in their ability to affect responses of the allosteric M1 agonist, 1-[1′-(2-tolyl)-1,4′-bipiperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one. Furthermore, these two compounds were distinct in their abilities to potentiate M1-mediated activation of phosphoinositide hydrolysis and phospholipase D. The discovery of multiple structurally distinct positive allosteric modulators of M1 is an exciting advance in establishing the potential of allosteric modulators for selective activation of this receptor. These data also suggest that structurally diverse M1 potentiators may act by distinct mechanisms and differentially regulate receptor coupling to downstream signaling pathways.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Small-molecule screen identifies inhibitors of the neuronal K-Cl cotransporter KCC2

Eric Delpire; Emily Days; L. Michelle Lewis; Dehui Mi; Kwangho Kim; Craig W. Lindsley; C. David Weaver

KCC2, a neuronal-specific K-Cl cotransporter, plays a major role in maintaining intracellular Cl− concentration in neurons below its electrochemical equilibrium potential, thus favoring robust GABA hyperpolarizing or inhibitory responses. The pharmacology of the K-Cl cotransporter is dominated by loop diuretics such as furosemide and bumetanide, molecules used in clinical medicine because they inhibit the loop of Henle Na-K-2Cl cotransporter with much higher affinity. To identify molecules that affect KCC2 activity, we developed a fluorescence-based assay suitable for high-throughput screening (HTS) and used the assay to screen a library of 234,000 small molecules. We identified a large number of molecules that either decrease or increase the activity of the cotransporter. Here, we report the characterization of a small number of inhibitors, some of which inhibit KCC2 activity in the submicomolar range without substantially affecting NKCC1 activity. Using medicinal chemistry, we synthesized a number of variants, tested their effect on KCC2 function, and provide an analysis of structure/activity relationships. We also used one of the compounds to demonstrate competitive inhibition in regard to external [K+] versus noncompetitive inhibition in respect to external [Cl−].


Molecular Pharmacology | 2012

Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function.

Meredith J. Noetzel; Jerri M. Rook; Paige N. Vinson; Hyekyung P. Cho; Emily Days; Ya Zhou; Alice L. Rodriguez; Hilde Lavreysen; Shaun R. Stauffer; Colleen M. Niswender; Zixiu Xiang; J. Scott Daniels; Carrie K. Jones; Craig W. Lindsley; C. David Weaver; P. Jeffrey Conn

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have emerged as an exciting new approach for the treatment of schizophrenia and other central nervous system (CNS) disorders. Of interest, some mGlu5 PAMs act as pure PAMs, only potentiating mGlu5 responses to glutamate whereas others [allosteric agonists coupled with PAM activity (ago-PAMs)] potentiate responses to glutamate and have intrinsic allosteric agonist activity in mGlu5-expressing cell lines. All mGlu5 PAMs previously shown to have efficacy in animal models act as ago-PAMs in cell lines, raising the possibility that allosteric agonist activity is critical for in vivo efficacy. We have now optimized novel mGlu5 pure PAMs that are devoid of detectable agonist activity and structurally related mGlu5 ago-PAMs that activate mGlu5 alone in cell lines. Studies of mGlu5 PAMs in cell lines revealed that ago-PAM activity is dependent on levels of mGlu5 receptor expression in human embryonic kidney 293 cells, whereas PAM potency is relatively unaffected by levels of receptor expression. Furthermore, ago-PAMs have no agonist activity in the native systems tested, including cortical astrocytes and subthalamic nucleus neurons and in measures of long-term depression at the hippocampal Schaffer collateral-CA1 synapse. Finally, studies with pure PAMs and ago-PAMs chemically optimized to provide comparable CNS exposure revealed that both classes of mGlu5 PAMs have similar efficacy in a rodent model predictive of antipsychotic activity. These data suggest that the level of receptor expression influences the ability of mGlu5 PAMs to act as allosteric agonists in vitro and that ago-PAM activity observed in cell-based assays may not be important for in vivo efficacy.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery and optimization of a novel, selective and brain penetrant M1 positive allosteric modulator (PAM): the development of ML169, an MLPCN Probe

Paul R Reid; Thomas M. Bridges; Douglas J. Sheffler; Hyekyung P. Cho; L. Michelle Lewis; Emily Days; J. Scott Daniels; Carrie K. Jones; Colleen M. Niswender; C. David Weaver; P. Jeffrey Conn; Craig W. Lindsley; Michael R. Wood

This Letter describes a chemical lead optimization campaign directed at VU0108370, a weak M(1) PAM hit with a novel chemical scaffold from a functional HTS screen within the MLPCN. An iterative parallel synthesis approach rapidly established SAR for this series and afforded VU0405652 (ML169), a potent, selective and brain penetrant M(1) PAM with an in vitro profile comparable to the prototypical M(1) PAM, BQCA, but with an improved brain to plasma ratio.


ACS Chemical Biology | 2011

Identification and optimization of small molecules that restore E-cadherin expression and reduce invasion in colorectal carcinoma cells.

Sydney L. Stoops; A. Scott Pearson; Connie Weaver; Alex G. Waterson; Emily Days; Chris Farmer; Suzanne Brady; C. David Weaver; R. Daniel Beauchamp; Craig W. Lindsley

E-cadherin is a transmembrane protein that maintains intercellular contacts and cell polarity in epithelial tissue. The down-regulation of E-cadherin contributes to the induction of the epithelial-to-mesenchymal transition (EMT), resulting in an increased potential for cellular invasion of surrounding tissues and entry into the bloodstream. Loss of E-cadherin has been observed in a variety of human tumors as a result of somatic mutations, chromosomal deletions, silencing of the CDH1 gene promoter, and proteolytic cleavage. To date, no compounds directly targeting E-cadherin restoration have been developed. Here, we report the development and use of a novel high-throughput immunofluorescent screen to discover lead compounds that restore E-cadherin expression in the SW620 colon adenocarcinoma cell line. We confirmed restoration of E-cadherin using immunofluorescent microscopy and were able to determine the EC(50) for selected compounds using an optimized In-Cell Western assay. The profiled compounds were also shown to have a minimal effect on cell proliferation but did decrease cellular invasion. We have also conducted preliminary investigations to elucidate a discrete molecular target to account for the phenotypic behavior of these small molecules and have noted a modest increase in E-cadherin mRNA transcripts, and RNA-Seq analysis demonstrated that potent analogues elicited a 10-fold increase in CDH1 (E-cadherin) gene expression.


PLOS ONE | 2014

Discovery and characterization of a potent and selective inhibitor of Aedes aegypti inward rectifier potassium channels.

Rene Raphemot; Matthew F. Rouhier; Daniel R. Swale; Emily Days; C. David Weaver; Kimberly M. Lovell; Leah C. Konkel; Darren W. Engers; Sean F. Bollinger; Corey R. Hopkins; Peter M. Piermarini; Jerod S. Denton

Vector-borne diseases such as dengue fever and malaria, which are transmitted by infected female mosquitoes, affect nearly half of the worlds population. The emergence of insecticide-resistant mosquito populations is reducing the effectiveness of conventional insecticides and threatening current vector control strategies, which has created an urgent need to identify new molecular targets against which novel classes of insecticides can be developed. We previously demonstrated that small molecule inhibitors of mammalian Kir channels represent promising chemicals for new mosquitocide development. In this study, high-throughput screening of approximately 30,000 chemically diverse small-molecules was employed to discover potent and selective inhibitors of Aedes aegypti Kir1 (AeKir1) channels heterologously expressed in HEK293 cells. Of 283 confirmed screening ‘hits’, the small-molecule inhibitor VU625 was selected for lead optimization and in vivo studies based on its potency and selectivity toward AeKir1, and tractability for medicinal chemistry. In patch clamp electrophysiology experiments of HEK293 cells, VU625 inhibits AeKir1 with an IC50 value of 96.8 nM, making VU625 the most potent inhibitor of AeKir1 described to date. Furthermore, electrophysiology experiments in Xenopus oocytes revealed that VU625 is a weak inhibitor of AeKir2B. Surprisingly, injection of VU625 failed to elicit significant effects on mosquito behavior, urine excretion, or survival. However, when co-injected with probenecid, VU625 inhibited the excretory capacity of mosquitoes and was toxic, suggesting that the compound is a substrate of organic anion and/or ATP-binding cassette (ABC) transporters. The dose-toxicity relationship of VU625 (when co-injected with probenecid) is biphasic, which is consistent with the molecule inhibiting both AeKir1 and AeKir2B with different potencies. This study demonstrates proof-of-concept that potent and highly selective inhibitors of mosquito Kir channels can be developed using conventional drug discovery approaches. Furthermore, it reinforces the notion that the physical and chemical properties that determine a compounds bioavailability in vivo will be critical in determining the efficacy of Kir channel inhibitors as insecticides.


ACS Chemical Neuroscience | 2014

Identification of positive allosteric modulators VU0155094 (ML397) and VU0422288 (ML396) reveals new insights into the biology of metabotropic glutamate receptor 7.

Nidhi Jalan-Sakrikar; Julie R. Field; Rebecca Klar; Margrith E. Mattmann; Karen J. Gregory; Rocio Zamorano; Darren W. Engers; Sean R. Bollinger; C. David Weaver; Emily Days; L. Michelle Lewis; Thomas J. Utley; Miguel A. Hurtado; Delphine Rigault; Francine Acher; Adam G. Walker; Bruce J. Melancon; Michael R. Wood; Craig W. Lindsley; P. Jeffrey Conn; Zixiu Xiang; Corey R. Hopkins; Colleen M. Niswender

Metabotropic glutamate receptor 7 (mGlu7) is a member of the group III mGlu receptors (mGlus), encompassed by mGlu4, mGlu6, mGlu7, and mGlu8. mGlu7 is highly expressed in the presynaptic active zones of both excitatory and inhibitory synapses, and activation of the receptor regulates the release of both glutamate and GABA. mGlu7 is thought to be a relevant therapeutic target for a number of neurological and psychiatric disorders, and polymorphisms in the GRM7 gene have been linked to autism, depression, ADHD, and schizophrenia. Here we report two new pan-group III mGlu positive allosteric modulators, VU0155094 and VU0422288, which show differential activity at the various group III mGlus. Additionally, both compounds show probe dependence when assessed in the presence of distinct orthosteric agonists. By pairing studies of these nonselective compounds with a synapse in the hippocampus that expresses only mGlu7, we have validated activity of these compounds in a native tissue setting. These studies provide proof-of-concept evidence that mGlu7 activity can be modulated by positive allosteric modulation, paving the way for future therapeutics development.


Scientific Reports | 2016

An insecticide resistance-breaking mosquitocide targeting inward rectifier potassium channels in vectors of Zika virus and malaria

Daniel R. Swale; Darren W. Engers; Sean R. Bollinger; Aaron D. Gross; Edna Alfaro Inocente; Emily Days; Fariba Kanga; Reed M. Johnson; Liu Yang; Jeffrey R. Bloomquist; Corey R. Hopkins; Peter M. Piermarini; Jerod S. Denton

Insecticide resistance is a growing threat to mosquito control programs around the world, thus creating the need to discover novel target sites and target-specific compounds for insecticide development. Emerging evidence suggests that mosquito inward rectifier potassium (Kir) channels represent viable molecular targets for developing insecticides with new mechanisms of action. Here we describe the discovery and characterization of VU041, a submicromolar-affinity inhibitor of Anopheles (An.) gambiae and Aedes (Ae.) aegypti Kir1 channels that incapacitates adult female mosquitoes from representative insecticide-susceptible and -resistant strains of An. gambiae (G3 and Akron, respectively) and Ae. aegypti (Liverpool and Puerto Rico, respectively) following topical application. VU041 is selective for mosquito Kir channels over several mammalian orthologs, with the exception of Kir2.1, and is not lethal to honey bees. Medicinal chemistry was used to develop an analog, termed VU730, which retains activity toward mosquito Kir1 but is not active against Kir2.1 or other mammalian Kir channels. Thus, VU041 and VU730 are promising chemical scaffolds for developing new classes of insecticides to combat insecticide-resistant mosquitoes and the transmission of mosquito-borne diseases, such as Zika virus, without harmful effects on humans and beneficial insects.

Collaboration


Dive into the Emily Days's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig W. Lindsley

Office of Technology Transfer

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Scott Daniels

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary A. Sulikowski

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge