Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Giloux is active.

Publication


Featured researches published by C. Giloux.


IEEE Transactions on Applied Superconductivity | 2009

Test Results of LARP Nb3Sn Quadrupole Magnets Using a Shell-based Support Structure (TQS)

S. Caspi; D.R. Dietderich; H. Felice; P. Ferracin; R. Hafalia; C. R. Hannaford; A.F. Lietzke; J. Lizarazo; GianLuca Sabbi; X. Wang; A. Ghosh; P. Wanderer; Giorgio Ambrosio; E. Barzi; R. Bossert; G. Chlachidze; S. Feher; Vadim V. Kashikhin; M.J. Lamm; M. Tartaglia; Alexander V. Zlobin; M. Bajko; B. Bordini; Gijs DeRijk; C. Giloux; M. Karppinen; Juan Carlos Perez; L. Rossi; A. Siemko; E. Todesco

Amongst the magnet development program of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider luminosity upgrade, six quadrupole magnets were built and tested using a shell based key and bladder technology (TQS). The 1 m long 90 mm aperture magnets are part of the US LHC Accelerator Research Program (LARP) aimed at demonstrating Nb3Sn technology by the year 2009, of a 3.6 m long magnet capable of achieving 200 T/m. In support of the LARP program the TQS magnets were tested at three different laboratories, LBNL, FNAL and CERN and while at CERN a technology-transfer and a four days magnet disassembly and reassembly were included. This paper summarizes the fabrication, assembly, cool-down and test results of the six magnets and compares measurements with design expectations.


IEEE Transactions on Applied Superconductivity | 2013

Cold Test Results of the LARP HQ

H. Bajas; Giorgio Ambrosio; Michael Anerella; M. Bajko; R. Bossert; S. Caspi; A. Chiuchiolo; G. Chlachidze; D.R. Dietderich; Olaf Dunkel; H. Felice; P. Ferracin; J. Feuvrier; Lucio Fiscarelli; A. Ghosh; C. Giloux; A. Godeke; A.R. Hafalia; M. Marchevsky; Stephan Russenschuck; G. Sabbi; T. Salmi; J. Schmalzle; E. Todesco; P. Wanderer; X. Wang; M. Yu

The high gradient quadrupole magnet is a 120-mm-aperture, 1-m-long Nb3Sn quadrupole developed by the LHC Accelerator Research Program collaboration in support of the High-Luminosity LHC project. Several tests were performed at Lawrence Berkeley National Laboratory in 2010-2011 achieving a maximum gradient of 170 T/m at 4.4 K. As a next step in the program, the latest model (HQ01e) was sent to CERN for testing at 1.9 K. As part of this test campaign, the magnet training has been done up to a maximum current of 16.2 kA corresponding to 85% of the short sample limit. The ramp rate dependence of the quench current is also identified. The efficiency of the quench heaters is then studied at 4.2 K and at 1.9 K. The analyses of the magnet resistance evolution during fast current discharge showed evidence of quench whereas high energy quenches have been successfully achieved and sustained with no dump resistor.


IEEE Transactions on Applied Superconductivity | 2011

\hbox{Nb}_{3} \hbox{Sn}

H. Felice; M. Bajko; B. Bingham; B. Bordini; L. Bottura; S. Caspi; G. de Rijk; D.R. Dietderich; P. Ferracin; C. Giloux; A. Godeke; R. Hafalia; Attilio Milanese; L. Rossi; G. Sabbi

Future upgrades of the Large Hadron Collider (LHC) will require large aperture and high gradient quadrupoles. Nb3Sn is the most viable option for this application but is also known for its strain sensitivity. In high field magnets, with magnetic fields above 12 T, the Lorentz forces will generate mechanical stresses that may exceed 200 MPa in the windings. The existing measurements of critical current versus strain of Nb3Sn strands or cables are not easily applicable to magnets. In order to investigate the impact of high mechanical stress on the quench performance, a series of tests was carried out within a LBNL/CERN collaboration using the magnet TQS03 (a LHC Accelerator Research Program (LARP) 1-meter long, 90-mm aperture Nb3Sn quadrupole). The magnet was tested four times at CERN under various pre-stress conditions. The average mechanical compressive azimuthal pre-stress on the coil at 4.2 K ranged from 120 MPa to 200 MPa. This paper reports on the magnet performance during the four tests focusing on the relation between pre-stress conditions and the training plateau.


IEEE Transactions on Applied Superconductivity | 2015

Quadrupole Magnet at 1.9 K

H. Bajas; G. Ambrosio; M. Anerella; M. Bajko; R. Bossert; L. Bottura; S. Caspi; D. W. Cheng; A. Chiuchiolo; G. Chlachidze; D.R. Dietderich; H. Felice; P. Ferracin; J. Feuvrier; A. Ghosh; C. Giloux; A. Godeke; A.R. Hafalia; M. Marchevsky; E. Ravaioli; G. Sabbi; T. Salmi; J. Schmalzle; E. Todesco; P. Wanderer; X. Wang; M. Yu

The HQ magnet is a 120-mm aperture, 1-m-long Nb3Sn quadrupole developed by the LARP collaboration in the framework of the High-Luminosity LHC project. A first series of coils was assembled and tested in five assemblies of the HQ01 series. The HQ01e model achieved a maximum gradient of 170 T/m at 4.5 K at LBNL in 2010-2011 and reached 184 T/m at 1.9 K at CERN in 2012. A new series of coils incorporating major design changes was fabricated for the HQ02 series. The first model, HQ02a, was tested at Fermilab where it reached 98% of the short sample limit at 4.5 K with a gradient of 182 T/m in 2013. However, the full training of the coils at 1.9 K could not be performed due to a current limit of 15 kA. Following this test, the azimuthal coil pre-load was increased by about 30 MPa and an additional current lead was installed at the electrical center of the magnet for quench protection studies. The test name of this magnet changed to HQ02b. In 2014, HQ02b was then shipped to CERN as the first opportunity for full training at 1.9 K. In this paper, we present a comprehensive summary of the HQ02 test results including: magnet training at 1.9 K with increased preload; quench origin and propagation; and ramp rate dependence. A series of powering tests was also performed to assess changes in magnet performance with a gradual increase of the MIITs. We also present the results of quench protection studies using different setting for detection, heater coverage, energy extraction and the coupling-loss induced quench (CLIQ) system.


IEEE Transactions on Applied Superconductivity | 2014

Performance of a

G. Kirby; Bernhard Auchmann; M. Bajko; V. I. Datskov; M. Durante; P. Fessia; J. Feuvrier; Michael Guinchard; C. Giloux; Pier Paolo Granieri; P. Manil; J. C. Perez; E. Ravaioli; Jean-Michel Rifflet; Stephan Russenschuck; T. Sahner; Michel Segreti; E. Todesco; G. Willering

Over the last five years, the model MQXC quadruple, a 120-mm aperture, 120 T/m, 1.8 m long, Nb-Ti version of the LHC insertion upgrade (due in 2021), has been developed at CERN. The magnet incorporates several novel concepts to extract high levels of heat flux and provide high quality field harmonics throughout the full operating current range. Existing LHC-dipole cable with new, open cable and ground insulation was used. Two, nominally identical 1.8-m-long magnets were built and tested at 1.8 K at the CERN SM18 test facility. This paper compares in detail the two magnet tests and presents: quench performance, internal stresses, heat extraction simulating radiation loading in the superconducting coils, and quench protection measurements. The first set of tests highlighted the conflict between high magnet cooling capability and quench protection. The second magnet had additional instrumentation to investigate further this phenomenon. Finally, we present test results from a new type of superconducting magnet protection system.


IEEE Transactions on Applied Superconductivity | 2009

{\rm Nb}_{3}{\rm Sn}

S. Caspi; D.R. Dietderich; H. Felice; P. Ferracin; R. Hafalia; C. R. Hannaford; A.F. Lietzke; J. Lizarazo; GianLuca Sabbi; X. Wang; A. Ghosh; P. Wanderer; Giorgio Ambrosio; E. Barzi; R. Bossert; G. Chlachidze; S. Feher; Vadim V. Kashikhin; M.J. Lamm; M. Tartaglia; Alexander V. Zlobin; M. Bajko; B. Bordini; Gijs DeRijk; C. Giloux; M. Karppinen; Juan Carlos Perez; L. Rossi; A. Siemko; E. Todesco

Amongst the magnet development program of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider luminosity upgrade, six quadrupole magnets were built and tested using a shell based key and bladder technology (TQS). The 1 m long 90 mm aperture magnets are part of the US LHC Accelerator Research Program (LARP) aimed at demonstrating Nb3Sn technology by the year 2009, of a 3.6 m long magnet capable of achieving 200 T/m. In support of the LARP program the TQS magnets were tested at three different laboratories, LBNL, FNAL and CERN and while at CERN a technology-transfer and a four days magnet disassembly and reassembly were included. This paper summarizes the fabrication, assembly, cool-down and test results of the six magnets and compares measurements with design expectations.


IEEE Transactions on Applied Superconductivity | 2009

Quadrupole Under High Stress

S. Caspi; Frederic Trillaud; A. Godeke; D.R. Dietderich; P. Ferracin; GianLuca Sabbi; C. Giloux; Juan Garcia Perez; M. Karppinen

It has been shown that by superposing two solenoid-like thin windings, that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is cos(thetas) -like and the resulting magnetic field in the bore is a pure dipole field. Following a previous test of such a superconducting dipole magnet, a quadrupole magnet was designed and built using similar principles. This paper describes the design, construction and test of a 75 mm bore 600 mm long superconducting quadrupole made with NbTi wire. The simplicity of the design, void of typical wedges, end-spacers and coil assembly, is especially suitable for future high field insert coils using Nb3Sn as well as HTS wires. The 3 mm thick coil reached 46 T/m but did not achieve its current plateau.


IEEE Transactions on Applied Superconductivity | 2008

Test Results of the LARP HQ02b Magnet at 1.9 K

S. Sanfilippo; Nicholas Sammut; Luca Bottura; M. Di-Castro; A. Basu; Jean-Pierre Koutchouk; E. Todesco; P. Hagen; N. Catalan-Lasheras; W. Venturini-Delsolaro; C. Giloux; R. Wolf

The field strength and homogeneity of all the LHC superconducting magnets were measured as a part of the production control and qualification process that has taken place during the past four years. In addition to field measurements at room temperature performed on the integral of the production, a significant part of the magnets has been subjected to extensive magnetic measurements at cold. The measurements at cryogenic temperatures, generally performed up to excitation currents of 12 kA corresponding to the ultimate LHC energy of 7.6 TeV, were mainly based on static and dynamic field integral and harmonic measurements. This allowed us to study in detail the DC effects from persistent current magnetization and long-term decay during constant current excitation. These effects are all expected to be of relevance for the field setting and error compensation in the LHC. This paper reports the main results obtained during these tests executed at operating conditions. The integrated field quality is discussed in terms of distribution (average and spread) of the field strength and low-order harmonics as obtained for all the main ring magnet families (dipoles, main and matching quadrupoles). The dependence of field quality on coil geometry, magnet and cable manufacturer is analyzed. A projection of the field quality expected for the critical components in the machine is presented.


IEEE Transactions on Applied Superconductivity | 2000

LHC IR Upgrade Nb–Ti, 120-mm Aperture Model Quadrupole Test Results at 1.8 K

Z. Ang; S. Arshad; M. Bajko; L. Bottura; C. Giloux; A. Ijspeert; M. Karppinen; L. Walckiers; D. Coxill; D. Landgrebe

Combined sextupole-dipole corrector magnets (MSCB) will be mounted in each half cell of the new Large Hadron Collider (LHC) being built at CERN. The dipole part, used for particle orbit corrections, will be powered individually and is designed for low current, originally 30 A but now 55 A. The sextupole part, used for chromaticity corrections, is connected via cold busbars in families of 12 or 13 magnets and is powered with 550 A. Several versions of this corrector magnet were tested as model magnets in order to develop the final design for the series. In the first design the coils are nested, with the dipole coil wound around the sextupole coil to obtain as short a magnet as possible, accepting the slight cross-talk between the coils due to persistent currents, and increased saturation effects. The design has evolved and an alternative design, in which the dipole and sextupole coils are separated, is now favored. Tests at 4.5 K and at 1.9 K were conducted to determine the training behavior, the field quality, and the cross-talk between the windings. This paper discusses the results for the different configurations.


IEEE Transactions on Applied Superconductivity | 2002

Test Results of LARP

A. Arn; S.A. Arshad; C. Giloux; F. Patru; H. Reymond; R. Senis; L. Walckiers

The LHC accelerator will be equipped with more than 3500 superconducting spool corrector magnets. CERN has awarded the contract for the series production and testing of these corrector magnets to industry. Magnetic field measurements are done at the factory. Dedicated magnetic measurement benches have been built to test these corrector magnets in the resistive state at room temperature. The benches allow to measure the strength of the main field, normal and skew harmonics, the magnetic axis position and orientation of the main field with respect to the mechanical reference points of the magnet. This paper presents the objectives, a description and the performances obtained with the benches during first measurements at industry.

Collaboration


Dive into the C. Giloux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Ferracin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Caspi

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

H. Felice

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge