Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Bajko is active.

Publication


Featured researches published by M. Bajko.


IEEE Transactions on Applied Superconductivity | 2015

The EuCARD-2 Future Magnets European Collaboration for Accelerator-Quality HTS Magnets

L. Rossi; A. Badel; M. Bajko; A. Ballarino; L. Bottura; Marc M.J. Dhalle; M. Durante; Ph. Fazilleau; J. Fleiter; Wilfried Goldacker; E. Haro; Anna Kario; G. Kirby; Clement Lorin; J. van Nugteren; G. de Rijk; T. Salmi; Carmine Senatore; Antti Stenvall; Pascal Tixador; Alexander Usoskin; G. Volpini; Y. Yang; N. Zangenberg

EuCARD-2 is a project supported by FP7-European Commission that includes, inter alia, a work-package (WP10) called “Future Magnets.” This project is part of the long term development that CERN is launching to explore magnet technology at 16 T to 20 T dipole operating field, within the scope of a study on Future Circular Colliders. The EuCARD2 collaboration is closely liaising with similar programs for high field accelerator magnets in the USA and Japan. The main focus of EuCARD2 WP10 is the development of a 10 kA-class superconducting, high current density cable suitable for accelerator magnets, The cable will be used to wind a stand-alone magnet 500 mm long and with an aperture of 40 mm. This magnet should yield 5 T, when stand-alone, and will enable to reach a 15 to 18 T dipole field by placing it in a large bore background dipole of 12-15 T. REBCO based Roebel cables is the baseline. Various magnet configurations with HTS tapes are under investigation and also use of Bi-2212 round wire based cables is considered. The paper presents the structure of the collaboration and describes the main choices made in the first year of the program, which has a breadth of five to six years of which four are covered by the FP7 frame.


IEEE Transactions on Applied Superconductivity | 2009

Test Results of LARP Nb3Sn Quadrupole Magnets Using a Shell-based Support Structure (TQS)

S. Caspi; D.R. Dietderich; H. Felice; P. Ferracin; R. Hafalia; C. R. Hannaford; A.F. Lietzke; J. Lizarazo; GianLuca Sabbi; X. Wang; A. Ghosh; P. Wanderer; Giorgio Ambrosio; E. Barzi; R. Bossert; G. Chlachidze; S. Feher; Vadim V. Kashikhin; M.J. Lamm; M. Tartaglia; Alexander V. Zlobin; M. Bajko; B. Bordini; Gijs DeRijk; C. Giloux; M. Karppinen; Juan Carlos Perez; L. Rossi; A. Siemko; E. Todesco

Amongst the magnet development program of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider luminosity upgrade, six quadrupole magnets were built and tested using a shell based key and bladder technology (TQS). The 1 m long 90 mm aperture magnets are part of the US LHC Accelerator Research Program (LARP) aimed at demonstrating Nb3Sn technology by the year 2009, of a 3.6 m long magnet capable of achieving 200 T/m. In support of the LARP program the TQS magnets were tested at three different laboratories, LBNL, FNAL and CERN and while at CERN a technology-transfer and a four days magnet disassembly and reassembly were included. This paper summarizes the fabrication, assembly, cool-down and test results of the six magnets and compares measurements with design expectations.


Journal of Physics: Conference Series | 2010

Test results of TQS03: A LARP shell-based Nb3Sn quadrupole using 108/127 conductor

H Felice; G Ambrosio; M. Bajko; E Barzi; B. Bordini; R Bossert; S Caspi; D.R. Dietderich; Paolo Ferracin; J. Feuvrier; A. Ghosh; A Godeke; J Lizarazo; L. Rossi; Gianluca Sabbi; P. Wanderer; X Wang; A V Zlobin

Future insertion quadrupoles with large apertures and high gradients will be required for the Phase II luminosity upgrade (1035 cm−2s−1) of the Large Hadron Collider (LHC). Although improved designs, based on NbTi, are being considered as an intermediate step for the Phase I upgrade, the Nb3Sn conductor is presently the best option that meets the ultimate performance goals for both operating field and temperature margin. As part of the development of Nb3Sn magnet technology, the LHC Accelerator Research Program (LARP) developed and tested several 1-meter long, 90-mm aperture Nb3Sn quadrupoles. The first two series of magnet used OST MJR 54/61 (TQ01 series) and OST RRP 54/61 (TQ02 series) strands. The third series (TQ03) used OST RRP 108/127 conductor. The larger number of sub-elements and the consequent reduction of the effective filament size, together with an increased fraction of copper and a lower Jc were expected to improve the conductor stability. The new coils were tested in the TQS03 series using a shell structure assembled with keys and bladders. The objective of the first test (TQS03a) was to evaluate the performances of the 108/127 conductor and, in particular, its behaviour at 1.9 K, while the second test (TQS03b) investigated the impact on high azimuthal pre-stress on the magnet performance. This paper reports on TQS03 fabrication, the strain gauge measurements performed during assembly, cool-down, excitation and the quench behaviour of the two magnets.


IEEE Transactions on Applied Superconductivity | 2013

Cold Test Results of the LARP HQ

H. Bajas; Giorgio Ambrosio; Michael Anerella; M. Bajko; R. Bossert; S. Caspi; A. Chiuchiolo; G. Chlachidze; D.R. Dietderich; Olaf Dunkel; H. Felice; P. Ferracin; J. Feuvrier; Lucio Fiscarelli; A. Ghosh; C. Giloux; A. Godeke; A.R. Hafalia; M. Marchevsky; Stephan Russenschuck; G. Sabbi; T. Salmi; J. Schmalzle; E. Todesco; P. Wanderer; X. Wang; M. Yu

The high gradient quadrupole magnet is a 120-mm-aperture, 1-m-long Nb3Sn quadrupole developed by the LHC Accelerator Research Program collaboration in support of the High-Luminosity LHC project. Several tests were performed at Lawrence Berkeley National Laboratory in 2010-2011 achieving a maximum gradient of 170 T/m at 4.4 K. As a next step in the program, the latest model (HQ01e) was sent to CERN for testing at 1.9 K. As part of this test campaign, the magnet training has been done up to a maximum current of 16.2 kA corresponding to 85% of the short sample limit. The ramp rate dependence of the quench current is also identified. The efficiency of the quench heaters is then studied at 4.2 K and at 1.9 K. The analyses of the magnet resistance evolution during fast current discharge showed evidence of quench whereas high energy quenches have been successfully achieved and sustained with no dump resistor.


IEEE Transactions on Applied Superconductivity | 2016

\hbox{Nb}_{3} \hbox{Sn}

P. Ferracin; G. Ambrosio; M. Anerella; A. Ballarino; H. Bajas; M. Bajko; B. Bordini; R. Bossert; D. W. Cheng; D.R. Dietderich; G. Chlachidze; L D Cooley; H. Felice; A. Ghosh; R. Hafalia; E F Holik; S. Izquierdo Bermudez; P. Fessia; Philippe Grosclaude; Michael Guinchard; M. Juchno; S. Krave; Friedrich Lackner; M. Marchevsky; Vittorio Marinozzi; F. Nobrega; L. Oberli; Heng Pan; Jorge Pérez; H. Prin

The High Luminosity (HiLumi) Large Hadron Collider (LHC) project has, as the main objective, to increase the LHC peak luminosity by a factor five and the integrated luminosity by a factor ten. This goal will be achieved mainly with a new interaction region layout, which will allow a stronger focusing of the colliding beams. The target will be to reduce the beam size in the interaction points by a factor of two, which requires doubling the aperture of the low-β (or inner triplet) quadrupole magnets. The use of Nb3Sn superconducting material and, as a result, the possibility of operating at magnetic field levels in the windings higher than 11 T will limit the increase in length of these quadrupoles, called MQXF, to acceptable levels. After the initial design phase, where the key parameters were chosen and the magnets conceptual design finalized, the MQXF project, a joint effort between the U.S. LHC Accelerator Research Program and the Conseil Européen pour la Recherche Nucléaire (CERN), has now entered the construction and test phase of the short models. Concurrently, the preparation for the development of the full-length prototypes has been initiated. This paper will provide an overview of the project status, describing and reporting on the performance of the superconducting material, the lessons learnt during the fabrication of superconducting coils and support structure, and the fine tuning of the magnet design in view of the start of the prototyping phase.


IEEE Transactions on Applied Superconductivity | 2017

Quadrupole Magnet at 1.9 K

D. Tommasini; Bernhard Auchmann; H. Bajas; M. Bajko; A. Ballarino; G. Bellomo; Michael Benedikt; Susana Izquierdo Bermudez; B. Bordini; Luca Bottura; Marco Buzio; Marc M.J. Dhalle; M. Durante; Gijs de Rijk; P. Fabbricatore; S. Farinon; P. Ferracin; Peng Gao; Friedrich Lackner; Clement Lorin; Vittorio Marinozzi; Teresa Martinez; Javier Munilla; T. Ogitsu; Rafal Ortwein; Juan Garcia Perez; Marco Prioli; Jean-Michel Rifflet; Etienne Rochepault; Stephan Russenschuck

A key challenge for a future circular collider (FCC) with centre-of-mass energy of 100 TeV and a circumference in the range of 100 km is the development of high-field superconducting accelerator magnets, capable of providing a 16 T dipolar field of accelerator quality in a 50 mm aperture. This paper summarizes the strategy and actions being undertaken in the framework of the FCC 16 T Magnet Technology Program and the Work Package 5 of the EuroCirCol.


IEEE Transactions on Applied Superconductivity | 2011

Development of MQXF: The Nb 3 Sn Low-

H. Felice; M. Bajko; B. Bingham; B. Bordini; L. Bottura; S. Caspi; G. de Rijk; D.R. Dietderich; P. Ferracin; C. Giloux; A. Godeke; R. Hafalia; Attilio Milanese; L. Rossi; G. Sabbi

Future upgrades of the Large Hadron Collider (LHC) will require large aperture and high gradient quadrupoles. Nb3Sn is the most viable option for this application but is also known for its strain sensitivity. In high field magnets, with magnetic fields above 12 T, the Lorentz forces will generate mechanical stresses that may exceed 200 MPa in the windings. The existing measurements of critical current versus strain of Nb3Sn strands or cables are not easily applicable to magnets. In order to investigate the impact of high mechanical stress on the quench performance, a series of tests was carried out within a LBNL/CERN collaboration using the magnet TQS03 (a LHC Accelerator Research Program (LARP) 1-meter long, 90-mm aperture Nb3Sn quadrupole). The magnet was tested four times at CERN under various pre-stress conditions. The average mechanical compressive azimuthal pre-stress on the coil at 4.2 K ranged from 120 MPa to 200 MPa. This paper reports on the magnet performance during the four tests focusing on the relation between pre-stress conditions and the training plateau.


IEEE Transactions on Applied Superconductivity | 2015

\beta

H. Bajas; G. Ambrosio; M. Anerella; M. Bajko; R. Bossert; L. Bottura; S. Caspi; D. W. Cheng; A. Chiuchiolo; G. Chlachidze; D.R. Dietderich; H. Felice; P. Ferracin; J. Feuvrier; A. Ghosh; C. Giloux; A. Godeke; A.R. Hafalia; M. Marchevsky; E. Ravaioli; G. Sabbi; T. Salmi; J. Schmalzle; E. Todesco; P. Wanderer; X. Wang; M. Yu

The HQ magnet is a 120-mm aperture, 1-m-long Nb3Sn quadrupole developed by the LARP collaboration in the framework of the High-Luminosity LHC project. A first series of coils was assembled and tested in five assemblies of the HQ01 series. The HQ01e model achieved a maximum gradient of 170 T/m at 4.5 K at LBNL in 2010-2011 and reached 184 T/m at 1.9 K at CERN in 2012. A new series of coils incorporating major design changes was fabricated for the HQ02 series. The first model, HQ02a, was tested at Fermilab where it reached 98% of the short sample limit at 4.5 K with a gradient of 182 T/m in 2013. However, the full training of the coils at 1.9 K could not be performed due to a current limit of 15 kA. Following this test, the azimuthal coil pre-load was increased by about 30 MPa and an additional current lead was installed at the electrical center of the magnet for quench protection studies. The test name of this magnet changed to HQ02b. In 2014, HQ02b was then shipped to CERN as the first opportunity for full training at 1.9 K. In this paper, we present a comprehensive summary of the HQ02 test results including: magnet training at 1.9 K with increased preload; quench origin and propagation; and ramp rate dependence. A series of powering tests was also performed to assess changes in magnet performance with a gradual increase of the MIITs. We also present the results of quench protection studies using different setting for detection, heater coverage, energy extraction and the coupling-loss induced quench (CLIQ) system.


IEEE Transactions on Applied Superconductivity | 2012

Quadrupole for the HiLumi LHC

M. Bajko; B. Bordini; S. Canfer; G. Ellwood; J. Feuvrier; Michael Guinchard; M. Karppinen; C. Kokkinos; P. Manil; Attilio Milanese; L. Oberli; J. C. Perez; Federico Regis; G. de Rijk

The Short Model Coil (SMC) assembly has been designed, as test bench for short racetrack coils wound with cable. The mechanical structure comprises an iron yoke surrounded by a 20 mm thick aluminum alloy shell, and includes four loading pads that transmit the required pre-compression from the outer shell into the two coils. The outer shell is pre-tensioned with mechanical keys that are inserted with the help of pressurized bladders and two 30 mm diameter aluminum alloy rods provide the axial loading to the coil ends. The outer shell, the axial rods, and the coils are instrumented with strain gauges, which allow precise monitoring of the loading conditions during the assembly and at cryogenic temperature during the magnet test. Two SMC assemblies have been completed and cold tested in the frame of a European collaboration between CEA (FR), CERN and STFC (UK) and with the technical support from LBNL (US). This paper describes the main features of the SMC assembly, the experience from the dummy assemblies, the fabrication of the coils, and discusses the test results of the cold tests showing a peak field of 12.5 T at 1.9 K after training.


IEEE Transactions on Applied Superconductivity | 2010

The 16 T Dipole Development Program for FCC

Federico Regis; P. Manil; P. Fessia; M. Bajko; G. de Rijk

The Short Model Coil (SMC) working group was set in February 2007 within the Next European Dipole (NED) program, in order to develop a short-scale model of a Nb3Sn dipole magnet. The SMC group comprises four laboratories: CERN/TE-MSC group (CH), CEA/IRFU (FR), RAL (UK) and LBNL (US). The SMC magnet was originally conceived to reach a peak field of about 13 T on conductor, using a 2500 A/mm Powder-In-Tube (PIT) strand. The aim of this magnet device is to study the degradation of the magnetic properties of the Nb3Sn cable, by applying different level of pre-stress. To fully satisfy this purpose, a versatile and easy-to-assemble structure has to be realized. The design of the SMC magnet has been developed from an existing dipole magnet, the SD01, designed, built and tested at LBNL with support from CEA. In this paper we will describe the mechanical optimization of the dipole, starting from a conceptual configuration based on a former magnetic analysis. Two and three-dimensional Finite Element Method (FEM) models have been implemented in ANSYS and in CAST3M, aiming at setting the mechanical parameters of the dipole magnet structure, thus fulfilling the design constraints imposed by the materials.

Collaboration


Dive into the M. Bajko's collaboration.

Researchain Logo
Decentralizing Knowledge