C. J. Pollock
Goddard Space Flight Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. J. Pollock.
Science | 2016
J. L. Burch; R. B. Torbert; T. D. Phan; L. J Chen; T. E. Moore; R. E. Ergun; J. P. Eastwood; D. J. Gershman; P. A. Cassak; M. R. Argall; Sheng-Hsiang Wang; Michael Hesse; C. J. Pollock; B. L. Giles; R. Nakamura; B. H. Mauk; S. A. Fuselier; C. T. Russell; R. J. Strangeway; J. F. Drake; M. A. Shay; Yu. V. Khotyaintsev; Per-Arne Lindqvist; Göran Marklund; F. D. Wilder; D. T. Young; K. Torkar; J. Goldstein; J. C. Dorelli; L. A. Avanov
Probing magnetic reconnection in space Magnetic reconnection occurs when the magnetic field permeating a conductive plasma rapidly rearranges itself, releasing energy and accelerating particles. Reconnection is important in a wide variety of physical systems, but the details of how it occurs are poorly understood. Burch et al. used NASAs Magnetospheric Multiscale mission to probe the plasma properties within a reconnection event in Earths magnetosphere (see the Perspective by Coates). They find that the process is driven by the electron-scale dynamics. The results will aid our understanding of magnetized plasmas, including those in fusion reactors, the solar atmosphere, solar wind, and the magnetospheres of Earth and other planets. Science, this issue p. 10.1126/science.aaf2939; see also p. 1176 Magnetic reconnection is driven by the electron-scale dynamics occurring within magnetized plasmas. INTRODUCTION Magnetic reconnection is a physical process occurring in plasmas in which magnetic energy is explosively converted into heat and kinetic energy. The effects of reconnection—such as solar flares, coronal mass ejections, magnetospheric substorms and auroras, and astrophysical plasma jets—have been studied theoretically, modeled with computer simulations, and observed in space. However, the electron-scale kinetic physics, which controls how magnetic field lines break and reconnect, has up to now eluded observation. RATIONALE To advance understanding of magnetic reconnection with a definitive experiment in space, NASA developed and launched the Magnetospheric Multiscale (MMS) mission in March 2015. Flying in a tightly controlled tetrahedral formation, the MMS spacecraft can sample the magnetopause, where the interplanetary and geomagnetic fields reconnect, and make detailed measurements of the plasma environment and the electric and magnetic fields in the reconnection region. Because the reconnection dissipation region at the magnetopause is thin (a few kilometers) and moves rapidly back and forth across the spacecraft (10 to 100 km/s), high-resolution measurements are needed to capture the microphysics of reconnection. The most critical measurements are of the three-dimensional electron distributions, which must be made every 30 ms, or 100 times the fastest rate previously available. RESULTS On 16 October 2015, the MMS tetrahedron encountered a reconnection site on the dayside magnetopause and observed (i) the conversion of magnetic energy to particle kinetic energy; (ii) the intense current and electric field that causes the dissipation of magnetic energy; (iii) crescent-shaped electron velocity distributions that carry the current; and (iv) changes in magnetic topology. The crescent-shaped features in the velocity distributions (left side of the figure) are the result of demagnetization of solar wind electrons as they flow into the reconnection site, and their acceleration and deflection by an outward-pointing electric field that is set up at the magnetopause boundary by plasma density gradients. As they are deflected in these fields, the solar wind electrons mix in with magnetospheric electrons and are accelerated along a meandering path that straddles the boundary, picking up the energy released in annihilating the magnetic field. As evidence of the predicted interconnection of terrestrial and solar wind magnetic fields, the crescent-shaped velocity distributions are diverted along the newly connected magnetic field lines in a narrow layer just at the boundary. This diversion along the field is shown in the right side of the figure. CONCLUSION MMS has yielded insights into the microphysics underlying the reconnection between interplanetary and terrestrial magnetic fields. The persistence of the characteristic crescent shape in the electron distributions suggests that the kinetic processes causing magnetic field line reconnection are dominated by electron dynamics, which produces the electric fields and currents that dissipate magnetic energy. The primary evidence for this magnetic dissipation is the appearance of an electric field and a current that are parallel to one another and out of the plane of the figure. MMS has measured this electric field and current, and has identified the important role of electron dynamics in triggering magnetic reconnection. Electron dynamics controls the reconnection between the terrestrial and solar magnetic fields. The process of magnetic reconnection has been a long-standing mystery. With fast particle measurements, NASA’s Magnetospheric Multiscale (MMS) mission has measured how electron dynamics controls magnetic reconnection. The data in the circles show electrons with velocities from 0 to 104 km/s carrying current out of the page on the left side of the X-line and then flowing upward and downward along the reconnected magnetic field on the right side. The most intense fluxes are red and the least intense are blue. The plot in the center shows magnetic field lines and out-of-plane currents derived from a numerical plasma simulation using the parameters observed by MMS. Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA’s Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth’s magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.
Journal of Geophysical Research | 1992
J. Vago; P. M. Kintner; S. Chesney; R. L. Arnoldy; K. A. Lynch; T. E. Moore; C. J. Pollock
Up to now, observations had been unable to show conclusively a one-to-one correspondence between perpendicular ion acceleration and a particular type of plasma wave within the O+ source region below 2000 km. In this paper we demonstrate that intense (100–300 mV/m) lower hybrid waves are responsible for transversely accelerating H+ and O+ ions to characteristic energies of up to 6 eV. This wave-particle interaction takes place in thin filamentary density cavities oriented along geomagnetic field lines. The measurements we discuss were conducted in the nightside auroral zone at altitudes between 500 km and 1100 km. Our results are consistent with theories of lower hybrid wave condensation and collapse.
Geophysical Research Letters | 1996
P. M. Kintner; J. Bonnell; R. L. Arnoldy; K. A. Lynch; C. J. Pollock; T. E. Moore
SCIFER encountered the cleft ion fountain within the cleft ionosphere at 1000 MLT and 1400 km altitude where it was possible to investigate the fine structure of transverse ion acceleration (TIA). Latitudinally narrow (30 km) regions of TIA were found to be closely correlated with broadband low frequency electric fields and reduced ionospheric density. The low frequency electric fields extended up to a few kHz with the largest amplitudes of about 10-20 mV/m p-p occurring below 400 Hz. No spectral features ordered by the ion cyclotron frequencies were observed. Outside regions of TIA the ionospheric density was typically 2×10 3 cm -3 while inside regions of TIA the density dropped to 5×10 2 cm -3 . The correlation between TIA, reduced ionospheric density and broadband low frequency electric fields is so exact, sometimes within a few hundred meters, we interpret the broadband low frequency electric fields as current-driven electrostatic waves, perhaps a mixture of ion cyclotron and ion acoustic waves.
Space Science Reviews | 1995
T. E. Moore; C. R. Chappell; M. O. Chandler; S. A. Fields; C. J. Pollock; D. L. Reasoner; D. T. Young; J. L. Burch; N. Eaker; J. H. Waite; D. J. McComas; J. E. Nordholdt; M. F. Thomsen; J. J. Berthelier; R. Robson
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0–500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of ∼ 1 cm2 effective area each) and angular resolution (6°×18°) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.
Geophysical Research Letters | 1992
R. L. Arnoldy; K. A. Lynch; P. M. Kintner; J. Vago; S. Chesney; T. E. Moore; C. J. Pollock
High time resolution ion mass spectrometer distribution function measurements and wave data from a sounding rocket flight over an aurora have revealed the fine structure of the transverse ion acceleration mechanism in the upper ionosphere. The transversely accelerated ion (TAI) events can occur in a volume with a cross-field dimension as small as several tens of meters and thus appear as 50–100 ms ion bursts due to the rocket payload motion. Bulk heating to a characteristic energy of several eV and tail heating in the direction perpendicular to B of a few percent of ambient ions to a characteristic energy the order of 10 eV occur for both hydrogen and oxygen ions. The TAI at 90° pitch angle occur in localized regions of intense lower hybrid waves and in regions of density depletion. On close examination of the correlation between the wave bursts and the TAI it is believed that the waves produce the ion acceleration. The TAI occur during periods of field-aligned auroral electron bursts. Finally, near 1000 km altitude they occur about once every second. If the event presented here is considered average, the flux of TAI oxygen ions above 7 eV could account for the ion conic fluxes measured by the ISIS spacecraft.
Geophysical Research Letters | 2001
C. J. Pollock; Kazushi Asamura; M. M. Balkey; J. L. Burch; H. O. Funsten; M. Grande; Mike Gruntman; M. G. Henderson; J.-M. Jahn; Michael L. Lampton; Michael W. Liemohn; D. J. McComas; T. Mukai; S. Ritzau; Mark L. Schattenburg; Earl Scime; R. M. Skoug; P. Valek; M. Wüest
InitialENA images obtained with the MENA imager on the IMAGE observatory show that ENAs ema- nating from Earths magnetosphere at least crudely track both Dst and Kp. Images obtained during the storm of August 12, 2000, clearly show strong ring current asymme- try during storm main phase and early recovery phase, and a high degree of symmetry during the late recovery phase. Thus, these images establish the existence of both partial and complete ring currents during the same storm. Further, they suggest that ring current loss through the day side mag- netopause dominates other loss processes during storm main phase and early recovery phase.
Journal of Geophysical Research | 1996
T. E. Moore; M. O. Chandler; C. J. Pollock; D. L. Reasoner; R. L. Arnoldy; B. Austin; P. M. Kintner; J. Bonnell
We report direct observations of the three-dimensional velocity distribution of selected topside ionospheric ion species in an auroral context between 500 and 550 km altitude. We find heating transverse to the local magnetic field in the core plasma, with significant heating of O +, He +, and H +, as well as tail heating events that occur independently of the core heating. The O + velocity distribution departs from bi-Maxwellian, at one point exhibiting an apparent ring-like shape. However, these observations are shown to be aliased within the auroral arc by temporal variations that are not well-resolved by the core plasma instrument. The dc electric field measurements reveal superthermal plasma drifts that are consistent with passage of the payload through a series of vortex structures or a larger scale circularly polarized hydromagnetic wave structure within the auroral arc. The dc electric field also shows that impulsive solitary structures, with a frequency spectrum in the ion cyclotron frequency range, occur in close correlation with the tail heating events. The drift and core heating observations lend support to the idea that core ion heating is driven at low altitudes by rapid convective motions imposed by the magnetosphere. Plasma wave emissions at ion frequencies and parallel heating of the low-energy electron plasma are observed in conjunction with this auroral form; however, the conditions are much more complex than those typically invoked in previous theoretical treatments of superthermal frictional heating. The observed ion heating within the arc clearly exceeds that expected from frictional heating for the light ion species H + and He +, and the core distributions also contain hot transverse tails, indicating an anomalous transverse heat source.
Geophysical Research Letters | 2016
B. Lavraud; Y. C. Zhang; Y. Vernisse; D. J. Gershman; J. C. Dorelli; P. A. Cassak; J. Dargent; C. J. Pollock; B. Giles; N. Aunai; M. R. Argall; L. A. Avanov; Alexander C. Barrie; J. L. Burch; M. O. Chandler; Li-Jen Chen; G. Clark; I. J. Cohen; Victoria N. Coffey; J. P. Eastwood; J. Egedal; S. Eriksson; R. E. Ergun; C. J. Farrugia; S. A. Fuselier; Vincent Génot; D. B. Graham; E. E. Grigorenko; H. Hasegawa; Christian Jacquey
Based on high-resolution measurements from NASAs Magnetospheric Multiscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earths magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20 eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90° away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials).
Geophysical Research Letters | 2016
S. Eriksson; B. Lavraud; F. D. Wilder; J. E. Stawarz; B. L. Giles; J. L. Burch; W. Baumjohann; R. E. Ergun; Per-Arne Lindqvist; W. Magnes; C. J. Pollock; C. T. Russell; Y. Saito; R. J. Strangeway; R. B. Torbert; D. J. Gershman; Yu. V. Khotyaintsev; J. C. Dorelli; S. J. Schwartz; L. A. Avanov; E. W. Grimes; Y. Vernisse; A. P. Sturner; T. D. Phan; Göran Marklund; T. E. Moore; W. R. Paterson; K. A. Goodrich
The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvin-Helmholtz (KH) waves at the duskside magnetopause on 8 Septemb ...
Geophysical Research Letters | 2016
J. P. Eastwood; T. D. Phan; P. A. Cassak; D. J. Gershman; C. C. Haggerty; K. Malakit; M. A. Shay; R. Mistry; M. Øieroset; C. T. Russell; James A. Slavin; M. R. Argall; L. A. Avanov; J. L. Burch; L. J Chen; J. C. Dorelli; R. E. Ergun; B. L. Giles; Y. V. Khotyaintsev; B. Lavraud; Per-Arne Lindqvist; T. E. Moore; R. Nakamura; W. R. Paterson; C. J. Pollock; R. J. Strangeway; R. B. Torbert; Sheng-Hsiang Wang
Abstract New Magnetospheric Multiscale (MMS) observations of small‐scale (~7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (~22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non‐frozen‐in ion behavior. The data are further compared with a particle‐in‐cell simulation. It is concluded that these small‐scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.