Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. M. S. Cohen is active.

Publication


Featured researches published by C. M. S. Cohen.


The Astrophysical Journal | 2005

Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events

Allan J. Tylka; C. M. S. Cohen; William F. Dietrich; M. A. Lee; C. G. Maclennan; R. A. Mewaldt; C. K. Ng; Donald V. Reames

Above a few tens of MeV per nucleon, large, gradual solar energetic particle (SEP) events are highly variable in their spectral characteristics and elemental composition. The origin of this variability has been a matter of intense and ongoing debate. In this paper, we propose that this variability arises from the interplay of two factors—shock geometry and a compound seed population, typically comprising both solar-wind and flare suprathermals. Whereas quasi-parallel shocks generally draw their seeds from solar-wind suprathermals, quasi-perpendicular shocks—by requiring a higher initial speed for effective injection—preferentially accelerate seed particles from flares. Solar-wind and flare seed particles have distinctive compositional characteristics, which are then reflected in the accelerated particles. We first examine our hypothesis in the context of particles locally accelerated near 1 AU by traveling interplanetary shocks. We illustrate the implications of our hypothesis for SEPs with two very large events, 2002 April 21 and 2002 August 24. These two events arise from very similar solar progenitors but nevertheless epitomize extremes in high-energy SEP variability. We then test our hypothesis with correlation studies based on observations of 43 large SEP events in 1997-2003 by the Advanced Composition Explorer, Wind, the Interplanetary Monitoring Platform 8, and GOES. We consider correlations among high-energy Fe/O, event size, spectral characteristics, the presence of GeV protons, and event duration at high energies. The observed correlations are all qualitatively consistent with our hypothesis. Although these correlation studies cannot be construed as proof of our hypothesis, they certainly confirm its viability. We also examine the alternative hypothesis in which a direct flare component—rather than flare particles subsequently processed through a shock—dominates at high energies. This alternative would produce compositional characteristics similar to those of our hypothesis. However, the observed longitude distribution of the enhanced Fe/O events, their spectral characteristics, and recent timing studies all pose serious challenges for a direct flare component. We also comment on measurements of the mean ionic charge state of Fe at high energies. We conclude that shock geometry and seed population potentially provide a framework for understanding the overall high-energy variability in large SEP events. We suggest additional studies for testing this hypothesis.


Journal of Geophysical Research | 2005

Proton, helium, and electron spectra during the large solar particle events of October-November 2003

R. A. Mewaldt; C. M. S. Cohen; A. W. Labrador; R. A. Leske; G. M. Mason; Mihir I. Desai; Mark Dixon Looper; J. E. Mazur; R. S. Selesnick; Dennis K. Haggerty

The extraordinary period from late October through early November 2003 was marked by more than 40 coronal mass ejections (CME), eight X-class flares, and five large solar energetic particle (SEP) events. Using data from instruments on the ACE, SAMPEX, and GOES-11 spacecraft, the fluences of H, He, O, and electrons have been measured in these five events over the energy interval from ∼0.1 to >100 MeV/nucleon for the ions and ∼0.04 to 8 MeV for electrons. The H, He, and O spectra are found to resemble double power laws, with a break in the spectral index between ∼5 and ∼50 MeV/nucleon which appears to depend on the charge-to-mass ratio of the species. Possible interpretations of the relative location of the H and He breaks are discussed. The electron spectra can also be characterized by double power laws, but incomplete energy coverage prevents an exact determination of where and how the spectra steepen. The proton and electron fluences in the 28 October 2003 SEP event are comparable to the largest observed during the previous solar maximum, and within a factor of 2 or 3 of the largest SEP events observed during the last 50 years. The 2-week period covered by these observations accounted for ∼20% of the high-energy solar-particle fluence over the years from 1997 to 2003. By integrating over the energy spectra, the total energy content of energetic protons, He, and electrons in the interplanetary medium can be estimated. After correcting for the location of the events, it is found that the kinetic energy in energetic particles amounts to a significant fraction of the estimated CME kinetic energy, implying that shock acceleration must be relatively efficient in these events.


Geophysical Research Letters | 2003

Two components in major solar particle events

H. V. Cane; T. T. von Rosenvinge; C. M. S. Cohen; R. A. Mewaldt

A study has been made of 29 intense, solar particle events observed in the energy range 25–80 MeV/nuc near Earth in the years 1997 through 2001. It is found that the majority of the events (19/29) had Fe/O ratios that were reasonably constant with time and energy, and with values above coronal. These all originated on the Suns western hemisphere and most had intensities that rose rapidly at the time of an associated flare (and coronal mass ejection). Interplanetary shocks observed near Earth had little effect on particle intensities during these events. The remaining 10 events had different intensity-time profiles and Fe/O ratios that varied with time and energy with event-averaged values at or below coronal. Most of these originated near central meridian and 6 had strong interplanetary shocks that were observed near Earth. There were four events with two peaks in the intensity-time profiles, the first near the time of the associated flare (with high Fe/O) and the other at shock passage (with a lower Fe/O) suggesting that solar particle events have two components. At high rigidities the first component (probably flare generated) usually dominates and interplanetary shock-accelerated particles (forming the second component) make a minor contribution except in the case of unusually fast shocks.


The Astrophysical Journal | 2006

Heavy-Ion Elemental Abundances in Large Solar Energetic Particle Events and Their Implications for the Seed Population

M. I. Desai; G. M. Mason; Robert E. Gold; S. M. Krimigis; C. M. S. Cohen; R. A. Mewaldt; J. E. Mazur; J. R. Dwyer

We have surveyed the ~0.1–10 MeV nucleon to the -1 abundances of heavy ions from 3He through Fe in 64 large solar energetic particle (LSEP) events observed on board the Advanced Composition Explorer from 1997 November through 2005 January. Our main results are (1) the 0.5–2.0 MeV nucleon to the -1 3He/ 4He ratio is enhanced between factors of ~2–150 over the solar wind value in 29 (~46%) events. (2) The Fe/O ratio in most LSEP events decreases with increasing energy up to ~60 MeV nucleon to the -1. (3) The Fe/O ratio is independent of CME speed, flare longitude, event size, the 3He/4He ratio, the pre-event Fe/O ratio, and solar activity. (4) The LSEP abundances exhibit unsystematic behavior as a function of M/Q ratio when compared with average solar wind values. (5) The survey-averaged abundances are enhanced with increasing M/Q ratio when compared with quiet coronal values and with average gradual SEP abundances obtained at 5–12 MeV nucleon to the -1. (6) The event-to-event variations in LSEP events are remarkably similar to those seen in CME-driven IP shocks and in 3He-rich SEP events. The above results cannot be explained by simply invoking the current paradigm for large gradual SEP events, i.e., that CME-driven shocks accelerate a seed population dominated by ambient coronal or solar wind ions. Instead, we suggest that the systematic M/Q-dependent enhancements in LSEP events are an inherent property of a highly variable suprathermal seed population, most of which is accelerated by mechanisms that produce heavy-ion abundances similar to those observed in impulsive SEP events. This heavy-ion-enriched material is subsequently accelerated at CME-driven shocks near the Sun by processes in which ions with higher M/Q ratios are accelerated less efficiently, thus causing the Fe/O ratios to decrease with increasing energy.


The Astrophysical Journal | 2013

THE VERY UNUSUAL INTERPLANETARY CORONAL MASS EJECTION OF 2012 JULY 23: A BLAST WAVE MEDIATED BY SOLAR ENERGETIC PARTICLES

C. T. Russell; R. A. Mewaldt; J. G. Luhmann; G. M. Mason; T. T. von Rosenvinge; C. M. S. Cohen; R. A. Leske; Raul Gomez-Herrero; Andreas Klassen; A. B. Galvin; Kristin Simunac

The giant, superfast, interplanetary coronal mass ejection, detected by STEREO A on 2012 July 23, well away from Earth, appears to have reached 1 AU with an unusual set of leading bow waves resembling in some ways a subsonic interaction, possibly due to the high pressures present in the very energetic particles produced in this event. Eventually, a front of record high-speed flow reached STEREO. The unusual behavior of this event is illustrated using the magnetic field, plasma, and energetic ion observations obtained by STEREO. Had the Earth been at the location of STEREO, the large southward-oriented magnetic field component in the event, combined with its high speed, would have produced a record storm.


Journal of Geophysical Research | 2006

Role of flares and shocks in determining solar energetic particle abundances

H. V. Cane; R. A. Mewaldt; C. M. S. Cohen; T. T. von Rosenvinge

[1] We examine solar energetic particle (SEP) event-averaged abundances of Fe relative to O and intensity versus time profiles at energies above 25 MeV/nucleon using the SIS instrument on ACE. These data are compared with solar wind conditions during each event and with estimates of the strength of the associated shock based on average travel times to 1 AU. We find that the majority of events with an Fe to O abundance ratio greater than two times the average 5–12 MeV/nuc value for large SEP events (0.134) occur in the western hemisphere. Furthermore, in most of these Fe-rich events the profiles peak within 12 hours of the associated flare, suggesting that some of the observed interplanetary particles are accelerated in these flares. The vast majority of events with Fe/O below 0.134 are influenced by interplanetary shock acceleration. We suggest that variations in elemental composition in SEP events mainly arise from the combination of flare particles and shock acceleration of these particles and/or the ambient medium.


The Astrophysical Journal | 2002

Spectral Properties of He and Heavy Ions in 3He-rich Solar Flares

G. M. Mason; M. E. Wiedenbeck; James A. Miller; J. E. Mazur; E. R. Christian; C. M. S. Cohen; A. C. Cummings; J. R. Dwyer; R. E. Gold; S. M. Krimigis; R. A. Leske; R. A. Mewaldt; P. L. Slocum; E. C. Stone; T. T. von Rosenvinge

Using advanced instrumentation on the ACE spacecraft, we have conducted a survey of solar energetic particle spectra in ^3He-rich events over a broad energy range ~80 keV nucleon^(-1) to 15 MeV nucleon^(-1) during the period 1997 September-2001 March. The spectra of ^4He and heavy ions (C, N, O, Ne, Mg, Si, S, Ca, Fe) were generally similar over this range but often hardened below ~1 MeV nucleon^(-1). In most of the events there was even stronger hardening of the ^3He spectrum below ~1 MeV nucleon^(-1), leading to an energy-dependent ^3He : ^4He ratio. These observations point to unique and distinct properties of ^3He in these events and place new constraints on models that seek to explain enhancements of ^3He and heavy ions using the same mechanisms. In addition to the events with spectra in the form of power laws or double power laws, there is a second class of event in which the low-energy ^3He and Fe spectra are rounded, while the ^4He remains a power law. In these cases ^3He and Fe spectra can be fitted at low energies by a stochastic acceleration model, but this model does not explain the higher energy portions of these spectra, nor the power-law spectral forms of the ^4He. These observations appear to require an additional mechanism, such as acceleration by cascading MHD turbulence. The ^3He enrichment pattern that we observe suggests that all these different spectral features might be due to processes with a common origin but then followed by different acceleration histories.


Geophysical Research Letters | 1999

New observations of heavy-ion-rich solar particle events from ACE

C. M. S. Cohen; R. A. Mewaldt; R. A. Leske; A. C. Cummings; E. C. Stone; M. E. Wiedenbeck; E. R. Christian; T. T. von Rosenvinge

Following launch of the Advanced Composition Explorer in August 1997, the Solar Isotope Spectrometer measured the composition of nine solar energetic particle events. We have used isotopic measurements of Ne to determine the degree of charge-to-mass-dependent fractionation and infer the charge states of C-Ni in the four most heavy-ion-rich of the nine events. The results indicate a source temperature of ∼4×10^6 K; this and the measured abundances suggest that these four events are more characteristic of impulsive events than gradual. Although the ^3He/^4He ratios are not enhanced to the level commonly ascribed to impulsive events, there are sizable enhancements over typical solar wind values measured in three of the events.


Geophysical Research Letters | 2002

The ion environment near Europa and its role in surface energetics

C. Paranicas; B. H. Mauk; J. M. Ratliff; C. M. S. Cohen; Robert E. Johnson

This paper gives the composition, energy spectra, and time variability of energetic ions measured just upstream of Europa. From 100 keV to 100 MeV, ion intensities vary by less than a factor of ∼5 among Europa passes considered between 1997 and 2000. We use the data to estimate the radiation dose rate into Europas surface for depths 0.01 mm – 1 m. We find that in a critical fraction of the upper layer on Europas trailing hemisphere, energetic electrons are the principal agent for radiolysis, and their bremsstrahlung photon products, not included in previous studies, dominate the dose below about 1 m. Because ion bombardment is more uniform across Europas surface, the radiation dose on the leading hemisphere is dominated by the proton flux. Differences exist between this calculation and published doses based on the E4 wake pass. For instance, proton doses presented here are much greater below 1 mm.


The Astrophysical Journal | 2004

Spectral Properties of Heavy Ions Associated with the Passage of Interplanetary Shocks at 1 AU

Mihir I. Desai; G. M. Mason; M. E. Wiedenbeck; C. M. S. Cohen; J. E. Mazur; J. R. Dwyer; Robert E. Gold; S. M. Krimigis; Qiang Hu; Charles W. Smith; R. M. Skoug

We have surveyed the energy spectra of ~0.1–100 MeV nucleon^(-1) C, O, and Fe nuclei associated with the passage of 72 interplanetary (IP) shocks observed on board the ACE spacecraft during the period 1997 October–2002 October. Our main results are as follows: (1) The spectral fit parameters are independent of the local shock properties. (2) About 7% of the events exhibit increasing Fe/O ratios with energy; the remaining events have Fe/O ratios that either remain constant or decrease with energy. (3) The Fe/O ratio in the shock-associated particles is typically ~30% lower than in the ambient population. (4) The fractionation pattern of the elemental abundances, the O spectra, and the energy-dependence of Fe/O at the IP shocks are remarkably similar to those of the ambient interplanetary suprathermal ion population. We suggest that the IP shocks studied here reaccelerate energetic particle seed spectra composed of ions from impulsive and gradual solar energetic particle events by systematic rigidity-dependent mechanisms in which higher rigidity ions are accelerated less efficiently than lower rigidity ions.

Collaboration


Dive into the C. M. S. Cohen's collaboration.

Top Co-Authors

Avatar

R. A. Mewaldt

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

E. C. Stone

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. C. Cummings

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. E. Wiedenbeck

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. A. Leske

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

G. M. Mason

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. R. Christian

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge