Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Macculi is active.

Publication


Featured researches published by C. Macculi.


New Astronomy | 2004

The Sky Polarization Observatory

S. Cortiglioni; G. Bernardi; E. Carretti; L. Casarini; S. Cecchini; C. Macculi; M. Ramponi; C. Sbarra; Jader Monari; A. Orfei; M. Poloni; S. Poppi; G. Boella; Silvio A. Bonometto; Loris P. L. Colombo; M. Gervasi; G. Sironi; M. Zannoni; M. Baralis; Oscar Antonio Peverini; R. Tascone; Giuseppe Virone; R. Fabbri; V. Natale; L. Nicastro; Kin-Wang Ng; E. N. Vinyajkin; V.A. Razin; M. V. Sazhin; I. A. Strukov

Abstract The Sky Polarization Observatory (SPOrt) is an ASI-funded experiment specifically designed to measure the sky polarization at 22, 32 and 90 GHz, which was selected in 1997 by ESA to be flown on the International Space Station. Starting in 2006 and for at least 18 months, it will be taking direct and simultaneous measurements of the Stokes parameters Q and U at 660 sky pixels, with FWHM=7°. Due to development efforts over the past few years, the design specifications have been significantly improved with respect to the first proposal. Here we present an up-to-date description of the instrument, which now warrants a pixel sensitivity of 1.7 μK for the polarization of the cosmic background radiation, assuming two years of observations. We discuss SPOrt scientific goals in the light of WMAP results, in particular in connection with the emerging double-reionization cosmological scenario.


Proceedings of SPIE | 2006

EURECA - A European-Japanese micro-calorimeter array

Piet A. J. de Korte; Jose V. Anquita; X. Barcons; P. Bastia; Joern Beyer; F. Briones; Marcel P. Bruijn; Javier Bussons; Augustin Camón; Francisco J. Carrera; Maite Teresa Ceballos; L. Colasanti; B. Dirks; Dietmar Drung; L. Fàbrega; F. Gatti; Raquel González-Arrabal; L. Gottardi; Wojtek Hajdas; Panu Helistö; Jan-Willem den Herder; H. Hoevers; Yoshitaka Ishisaki; Mikko Kiviranta; Jan van der Kuur; C. Macculi; A. Mchedlishvili; Kazu Mitsuda; Stephane Paltani; María Parra-Borderías

The EURECA (EURopean-JapanEse Calorimeter Array) project aims to demonstrate the science performance and technological readiness of an imaging X-ray spectrometer based on a micro-calorimeter array for application in future X-ray astronomy missions, like Constellation-X and XEUS. The prototype instrument consists of a 5 × 5 pixel array of TES-based micro-calorimeters read out by by two SQUID-amplifier channels using frequency-domain-multiplexing (FDM). The SQUID-amplifiers are linearized by digital base-band feedback. The detector array is cooled in a cryogenfree cryostat consisting of a pulse tube cooler and a two stage ADR. A European-Japanese consortium designs, fabricates, and tests this prototype instrument. This paper describes the instrument concept, and shows the design and status of the various sub-units, like the TES detector array, LC-filters, SQUID-amplifiers, AC-bias sources, digital electronics, etc. Initial tests of the system at the PTB beam line of the BESSY synchrotron showed stable performance and an X-ray energy resolution of 1.58 eV at 250 eV and 2.5 eV @ 5.9 keV for the read-out of one TES-pixel only. Next step is deployment of FDM to read-out the full array. Full performance demonstration is expected mid 2009.


Proceedings of SPIE | 2010

The x-ray microcalorimeter spectrometer onboard of IXO

J. W. den Herder; R. L. Kelley; K. Mitsuda; Luigi Piro; Simon R. Bandler; P. Bastia; M. Bruin; J. A. Chervenak; L. Colasanti; W. B. Doriese; M. J. DiPirro; Megan E. Eckart; Yuichiro Ezoe; E. Figueroa-Feliciano; L. Ferrari; Ryuichi Fujimoto; F. Gatti; Keith C. Gendreau; L. Gottardi; R. den Hartog; G. C. Hilton; H. Hoevers; K. D. Irwin; Yoshitaka Ishisaki; Ali Kashani; Caroline A. Kilbourne; P.A.J. de Korte; J. van der Kuur; C. Macculi; T. Mineo

One of the instruments on the International X-ray Observatory (IXO), under study with NASA, ESA and JAXA, is the X-ray Microcalorimeter Spectrometer (XMS). This instrument, which will provide high spectral resolution images, is based on X-ray micro-calorimeters with Transition Edge Sensor thermometers. The pixels have metallic X-ray absorbers and are read-out by multiplexed SQUID electronics. The requirements for this instrument are demanding. In the central array (40 x 40 pixels) an energy resolution of < 2.5 eV is required, whereas the energy resolution of the outer array is more relaxed (≈ 10 eV) but the detection elements have to be a factor 16 larger in order to keep the number of read-out channels acceptable for a cryogenic instrument. Due to the large collection area of the IXO optics, the XMS instrument must be capable of processing high counting rates, while maintaining the spectral resolution and a low deadtime. In addition, an anti-coincidence detector is required to suppress the particle-induced background. In this paper we will summarize the instrument status and performance. We will describe the results of design studies for the focal plane assembly and the cooling systems. Also the system and its required spacecraft resources will be given.


Proceedings of SPIE | 2012

The x-ray microcalorimeter spectrometer onboard Athena

J. W. den Herder; D. Bagnali; Simon R. Bandler; Marco Barbera; X. Barcons; Didier Barret; P. Bastia; M. Bisotti; C. Cara; M. T. Ceballos; Leonardo Corcione; Beatriz Cobo; L. Colasanti; J. de Plaa; M. J. DiPirro; W. B. Doriese; Yuichiro Ezoe; Ryuichi Fujimoto; F. Gatti; L. Gottardi; P. Guttridge; R. den Hartog; I. Hepburn; R. L. Kelley; K. D. Irwin; Yoshitaka Ishisaki; Caroline A. Kilbourne; P.A.J. de Korte; J. van der Kuur; Simone Lotti

One of the instruments on the Advanced Telescope for High-Energy Astrophysics (Athena) which was one of the three missions under study as one of the L-class missions of ESA, is the X-ray Microcalorimeter Spectrometer (XMS). This instrument, which will provide high-spectral resolution images, is based on X-ray micro-calorimeters with Transition Edge Sensor (TES) and absorbers that consist of metal and semi-metal layers and a multiplexed SQUID readout. The array (32 x 32 pixels) provides an energy resolution of < 3 eV. Due to the large collection area of the Athena optics, the XMS instrument must be capable of processing high counting rates, while maintaining the spectral resolution and a low deadtime. In addition, an anti-coincidence detector is required to suppress the particle-induced background. Compared to the requirements for the same instrument on IXO, the performance requirements have been relaxed to fit into the much more restricted boundary conditions of Athena. In this paper we illustrate some of the science achievable with the instrument. We describe the results of design studies for the focal plane assembly and the cooling systems. Also, the system and its required spacecraft resources will be given.


Astronomy and Astrophysics | 2014

In-orbit background of X-ray microcalorimeters and its effects on observations

Simone Lotti; D. Cea; C. Macculi; T. Mineo; L. Natalucci; E. Perinati; Luigi Piro; M. Federici; B. Martino

Methods.There are no experimental data about the background experienced by microcalorimeters in the L2 orbit, and thus the particle background levels were calculated by means of Monte Carlo simulations: we considered the original design configuration and an improved configuration aimed to reduce the unrejected background, and tested them in the L2 orbit and in the low Earth orbit, comparing the results with experimental data reported by other X-ray this http URL show the results obtainable with the improved configuration we simulated the observation of a faint, high-redshift, point source (F[0.5-10 keV]~6.4E-16 erg cm-2 s-1, z=3.7), and of a hot galaxy cluster at R200 (Sb[0.5-2 keV]=8.61E-16 erg cm-2 s-1 arcmin-2,T=6.6 keV). Results.First we confirm that implementing an active cryogenic anticoincidence reduces the particle background by an order of magnitude and brings it close to the required level.The implementation and test of several design solutions can reduce the particle background level by a further factor of 6 with respect to the original configuration.The best background level achievable in the L2 orbit with the implementation of ad-hoc passive shielding for secondary particles is similar to that measured in the more favorable LEO environment without the passive shielding, allowing us to exploit the advantages of the L2 orbit.We define a reference model for the diffuse background and collect all the available information on its variation with epoch and pointing direction.With this background level the ATHENA mission with the X-IFU instrument is able to detect ~4100 new obscured AGNs with F>6.4E-16 erg cm-2 s-1 during three years, to characterize cluster of galaxies with Sb(0.5-2 keV)>9.4E-16 erg cm-2 s-1 sr-1 on timescales of 50 ks (500 ks) with errors <40% (<12%) on metallicity,<16% (4.8%) on temperature,2.6% (0.72%) on the gas density, and several single-element abundances.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2012

Estimate of the impact of background particles on the X-ray Microcalorimeter Spectrometer on IXO

Simone Lotti; E. Perinati; L. Natalucci; L. Piro; T. Mineo; L. Colasanti; C. Macculi

We present the results of a study on the impact of particles of galactic (GCR) and solar origin for the X-ray Microcalorimeter Spectrometer (XMS) aboard an astronomical satellite flying in an orbit at the second Lagrangian point (L2). The detailed configuration presented in this paper is the one adopted for the International X-ray Observatory (IXO) study, however the derived estimates can be considered a conservative limit for ATHENA, that is the IXO redefined mission proposed to ESA. This work is aimed at the estimate of the residual background level expected on the focal plane detector during the mission lifetime, a crucial information in the development of any instrumental configuration that optimizes the XMS scientific performances. We used the Geant4 toolkit, a Monte Carlo based simulator, to investigate the rejection efficiency of the anticoincidence system and assess the residual background on the detector.


Experimental Astronomy | 2017

The particle background of the X-IFU instrument

Simone Lotti; Teresa Mineo; Christian Jacquey; S. Molendi; Matteo D’Andrea; C. Macculi; Luigi Piro

In this paper we are going to review the latest estimates for the particle background expected on the X-IFU instrument onboard of the ATHENA mission. The particle background is induced by two different particle populations: the so called “soft protons” and the Cosmic rays. The first component is composed of low energy particles (< 100s keV) that get funnelled by the mirrors towards the focal plane, losing part of their energy inside the filters and inducing background counts inside the instrument sensitivity band. The latter component is induced by high energy particles (> 100 MeV) that possess enough energy to cross the spacecraft and reach the detector from any direction, depositing a small fraction of their energy inside the instrument. Both these components are estimated using Monte Carlo simulations and the latest results are presented here.


Proceedings of SPIE | 2016

The Cryogenic Anti-Coincidence detector for ATHENA X-IFU: pulse analysis of the AC-S7 single pixel prototype

Matteo D'Andrea; A. Argan; Simone Lotti; C. Macculi; Luigi Piro; M. Biasotti; D. Corsini; F. Gatti; G. Torrioli

The ATHENA observatory is the second large-class mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme “The Hot and Energetic Universe”, by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these is the X-ray Integral Field Unit (X-IFU): it is a TES based kilo-pixel order array able to provide spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background expected at L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the background level and enable the mission science goals, a Cryogenic Anticoincidence (CryoAC) detector is placed < 1 mm below the TES array. It is a 4- pixel TES based detector, with wide Silicon absorbers sensed by Ir:Au TESes. The CryoAC development schedule foresees by Q1 2017 the delivery of a Demonstration Model (DM) to the X-IFU FPA development team. The DM is a single-pixel detector that will address the final design of the CryoAC. It will verify some representative requirements at single-pixel level, especially the detector operation at 50 mK thermal bath and the threshold energy at 20 keV. To reach the final DM design we have developed and tested the AC-S7 prototype, with 1 cm2 absorber area sensed by 65 Ir TESes. Here we will discuss the pulse analysis of this detector, which has been illuminated by the 60 keV line from a 241Am source. First, we will present the analysis performed to investigate pulses timings and spectrum, and to disentangle the athermal component of the pulses from the thermal one. Furthermore, we will show the application to our dataset of an alternative method of pulse processing, based upon Principal Component Analysis (PCA). This kind of analysis allow us to recover better energy spectra than achievable with traditional methods, improving the evaluation of the detector threshold energy, a fundamental parameter characterizing the CryoAC particle rejection efficiency.


Proceedings of SPIE | 2016

The Cryogenic AntiCoincidence detector for ATHENA X-IFU: A program overview

C. Macculi; A. Argan; Matteo D'Andrea; Simone Lotti; M. Laurenza; Luigi Piro; M. Biasotti; D. Corsini; F. Gatti; G. Torrioli; M. Fiorini; S. Molendi; M. Uslenghi; T. Mineo; A. Bulgarelli; V. Fioretti; E. Cavazzuti

The ATHENA observatory is the second large-class ESA mission, in the context of the Cosmic Vision 2015 - 2025, scheduled to be launched on 2028 at L2 orbit. One of the two on-board instruments is the X-IFU (X-ray Integral Field Unit): it is a TES-based kilo-pixels order array able to perform simultaneous high-grade energy spectroscopy (2.5 eV at 6 keV) and imaging over the 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background which is induced by primary protons of both solar and Cosmic Rays origin, and secondary electrons. The studies performed by Geant4 simulations depict a scenario where it is mandatory the use of reduction techniques that combine an active anticoincidence detector and a passive electron shielding to reduce the background expected in L2 orbit down to the goal level of 0.005 cts/cm2/s/keV, so enabling the characterization of faint or diffuse sources (e.g. WHIM or Galaxy cluster outskirts). From the detector point of view this is possible by adopting a Cryogenic AntiCoincidence (CryoAC) placed within a proper optimized environment surrounding the X-IFU TES array. It is a 4-pixels detector made of wide area Silicon absorbers sensed by Ir TESes, and put at a distance < 1 mm below the TES-array. On October 2015 the X-IFU Phase A program has been kicked-off, and about the CryoAC is at present foreseen on early 2017 the delivery of the DM1 (Demonstration Model 1) to the FPA development team for integration, which is made of 1 pixel “bridgessuspended” that will address the final design of the CryoAC. Both the background studies and the detector development work is on-going to provide confident results about the expected residual background at the TES-array level, and the single pixel design to produce a detector for testing activity on 2016/2017. Here we will provide an overview of the CryoAC program, discussing some details about the background assessment having impact on the CryoAC design, the last single pixel characterization, the structural issues, followed by some programmatic aspects.


Proceedings of SPIE | 2016

The focal plane assembly for the Athena X-ray Integral Field Unit instrument

B. D. Jackson; J. van der Kuur; R. den Hartog; Hiroki Akamatsu; A. Argan; Simon R. Bandler; Marco Barbera; Didier Barret; Marcel P. Bruijn; J. A. Chervenak; Johannes Dercksen; F. Gatti; L. Gottardi; D. Haas; J. W. den Herder; Caroline A. Kilbourne; Mikko Kiviranta; T. Lam-Trong; B. J. van Leeuwen; C. Macculi; L. Piro; S. J. Smith

This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instruments sensor array will be a ~ 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instruments cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostats 2 K stage, while shielding and filtering within the FPA will allow the instruments sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including straylight from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.

Collaboration


Dive into the C. Macculi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Torrioli

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge