Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Colasanti is active.

Publication


Featured researches published by L. Colasanti.


Proceedings of SPIE | 2006

EURECA - A European-Japanese micro-calorimeter array

Piet A. J. de Korte; Jose V. Anquita; X. Barcons; P. Bastia; Joern Beyer; F. Briones; Marcel P. Bruijn; Javier Bussons; Augustin Camón; Francisco J. Carrera; Maite Teresa Ceballos; L. Colasanti; B. Dirks; Dietmar Drung; L. Fàbrega; F. Gatti; Raquel González-Arrabal; L. Gottardi; Wojtek Hajdas; Panu Helistö; Jan-Willem den Herder; H. Hoevers; Yoshitaka Ishisaki; Mikko Kiviranta; Jan van der Kuur; C. Macculi; A. Mchedlishvili; Kazu Mitsuda; Stephane Paltani; María Parra-Borderías

The EURECA (EURopean-JapanEse Calorimeter Array) project aims to demonstrate the science performance and technological readiness of an imaging X-ray spectrometer based on a micro-calorimeter array for application in future X-ray astronomy missions, like Constellation-X and XEUS. The prototype instrument consists of a 5 × 5 pixel array of TES-based micro-calorimeters read out by by two SQUID-amplifier channels using frequency-domain-multiplexing (FDM). The SQUID-amplifiers are linearized by digital base-band feedback. The detector array is cooled in a cryogenfree cryostat consisting of a pulse tube cooler and a two stage ADR. A European-Japanese consortium designs, fabricates, and tests this prototype instrument. This paper describes the instrument concept, and shows the design and status of the various sub-units, like the TES detector array, LC-filters, SQUID-amplifiers, AC-bias sources, digital electronics, etc. Initial tests of the system at the PTB beam line of the BESSY synchrotron showed stable performance and an X-ray energy resolution of 1.58 eV at 250 eV and 2.5 eV @ 5.9 keV for the read-out of one TES-pixel only. Next step is deployment of FDM to read-out the full array. Full performance demonstration is expected mid 2009.


Proceedings of SPIE | 2010

The x-ray microcalorimeter spectrometer onboard of IXO

J. W. den Herder; R. L. Kelley; K. Mitsuda; Luigi Piro; Simon R. Bandler; P. Bastia; M. Bruin; J. A. Chervenak; L. Colasanti; W. B. Doriese; M. J. DiPirro; Megan E. Eckart; Yuichiro Ezoe; E. Figueroa-Feliciano; L. Ferrari; Ryuichi Fujimoto; F. Gatti; Keith C. Gendreau; L. Gottardi; R. den Hartog; G. C. Hilton; H. Hoevers; K. D. Irwin; Yoshitaka Ishisaki; Ali Kashani; Caroline A. Kilbourne; P.A.J. de Korte; J. van der Kuur; C. Macculi; T. Mineo

One of the instruments on the International X-ray Observatory (IXO), under study with NASA, ESA and JAXA, is the X-ray Microcalorimeter Spectrometer (XMS). This instrument, which will provide high spectral resolution images, is based on X-ray micro-calorimeters with Transition Edge Sensor thermometers. The pixels have metallic X-ray absorbers and are read-out by multiplexed SQUID electronics. The requirements for this instrument are demanding. In the central array (40 x 40 pixels) an energy resolution of < 2.5 eV is required, whereas the energy resolution of the outer array is more relaxed (≈ 10 eV) but the detection elements have to be a factor 16 larger in order to keep the number of read-out channels acceptable for a cryogenic instrument. Due to the large collection area of the IXO optics, the XMS instrument must be capable of processing high counting rates, while maintaining the spectral resolution and a low deadtime. In addition, an anti-coincidence detector is required to suppress the particle-induced background. In this paper we will summarize the instrument status and performance. We will describe the results of design studies for the focal plane assembly and the cooling systems. Also the system and its required spacecraft resources will be given.


Proceedings of SPIE | 2012

The x-ray microcalorimeter spectrometer onboard Athena

J. W. den Herder; D. Bagnali; Simon R. Bandler; Marco Barbera; X. Barcons; Didier Barret; P. Bastia; M. Bisotti; C. Cara; M. T. Ceballos; Leonardo Corcione; Beatriz Cobo; L. Colasanti; J. de Plaa; M. J. DiPirro; W. B. Doriese; Yuichiro Ezoe; Ryuichi Fujimoto; F. Gatti; L. Gottardi; P. Guttridge; R. den Hartog; I. Hepburn; R. L. Kelley; K. D. Irwin; Yoshitaka Ishisaki; Caroline A. Kilbourne; P.A.J. de Korte; J. van der Kuur; Simone Lotti

One of the instruments on the Advanced Telescope for High-Energy Astrophysics (Athena) which was one of the three missions under study as one of the L-class missions of ESA, is the X-ray Microcalorimeter Spectrometer (XMS). This instrument, which will provide high-spectral resolution images, is based on X-ray micro-calorimeters with Transition Edge Sensor (TES) and absorbers that consist of metal and semi-metal layers and a multiplexed SQUID readout. The array (32 x 32 pixels) provides an energy resolution of < 3 eV. Due to the large collection area of the Athena optics, the XMS instrument must be capable of processing high counting rates, while maintaining the spectral resolution and a low deadtime. In addition, an anti-coincidence detector is required to suppress the particle-induced background. Compared to the requirements for the same instrument on IXO, the performance requirements have been relaxed to fit into the much more restricted boundary conditions of Athena. In this paper we illustrate some of the science achievable with the instrument. We describe the results of design studies for the focal plane assembly and the cooling systems. Also, the system and its required spacecraft resources will be given.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2012

Estimate of the impact of background particles on the X-ray Microcalorimeter Spectrometer on IXO

Simone Lotti; E. Perinati; L. Natalucci; L. Piro; T. Mineo; L. Colasanti; C. Macculi

We present the results of a study on the impact of particles of galactic (GCR) and solar origin for the X-ray Microcalorimeter Spectrometer (XMS) aboard an astronomical satellite flying in an orbit at the second Lagrangian point (L2). The detailed configuration presented in this paper is the one adopted for the International X-ray Observatory (IXO) study, however the derived estimates can be considered a conservative limit for ATHENA, that is the IXO redefined mission proposed to ESA. This work is aimed at the estimate of the residual background level expected on the focal plane detector during the mission lifetime, a crucial information in the development of any instrumental configuration that optimizes the XMS scientific performances. We used the Geant4 toolkit, a Monte Carlo based simulator, to investigate the rejection efficiency of the anticoincidence system and assess the residual background on the detector.


Proceedings of SPIE | 2012

An efficient method for reducing the background of microcalorimeters applied to ATHENA-XMS

Simone Lotti; E. Perinati; L. Natalucci; L. Piro; T. Mineo; L. Colasanti; C. Macculi; M. Federici; B. Martino

We present several solutions to reduce the background that will be experienced by the X-ray Microcalorimeter Spectrometer (XMS) aboard of the ATHENA mission due to Galactic Cosmic Rays (GCR) and solar particles present in the second Lagrangian point L2. The configuration presented in this paper is the one adopted for the International X-ray Observatory (IXO) but the derived estimates can be considered a conservative limit for ATHENA, that is the IXO redefined mission proposed to ESA. We used the Geant4 toolkit, a Monte Carlo based simulator, to investigate the rejection efficiency of the anticoincidence system and assess the residual background on the detector. Even though the mission did not pass the down selection of ESA, this work lay the basis of a study for a microcalorimeters-based mission in L2.


Proceedings of SPIE | 2012

The cryogenic anticoincidence detector for ATHENA-XMS: preliminary results from the new prototype

C. Macculi; Luigi Piro; L. Colasanti; Simone Lotti; L. Natalucci; D. Bagliani; M. Biasotti; F. Gatti; G. Torrioli; Simone Chiarucci; Marco Barbera; Teresa Mineo; Emanuele Perinati

ATHENA has been the re-scoped IXO mission, and one of the foreseen focal plane instrument was the X-ray Microcalorimeter Spectrometer (XMS) working in the energy range 0.3-10 keV, which was a kilo-pixel array based on TES (Transition Edge Sensor) detectors. The need of an anticoincidence (AC) detector is legitimated by the results performed with GEANT4 simulations about the impact of the non x-ray background onto XMS at L2 orbit (REQ. < 0.02 cts/cm2/s/keV). Our consortium has both developed and tested seveal samples, with increasing area, in order to match the large area of the XMS (64 mm2). Here we show the preliminary results from the last prototype. The results achieved in this work offer a solution to reduce the particle background not only for the presently study mission, but also for any satellite/balloon borne instrument that foresees a TES-based microcalorimeters/bolometers focal plane (from millimeter to x-ray domain).


THE THIRTEENTH INTERNATIONAL WORKSHOP ON LOW TEMPERATURE DETECTORS—LTD13 | 2009

Development of a TES based Cryo-Anticoincidence for a large array of microcalorimeters

L. Colasanti; C. Macculi; Luigi Piro; L. Natalucci; F. Gatti; L. Ferrari; T. Mineo; Emanuele Perinati; G. Torrioli; P. Bastia; Marco Barbera

The employment of large arrays of microcalorimeters in space missions (IXO, EDGE/XENIA)[1][2][3], requires the presence of an anticoincidence detector to remove the background due to the particles, with a rejection efficiency at least equal to Suzaku (98%) [1]. A new concept of anticoincidence is under development to match the very tight thermal requirements and to simplify the design of the electronic chain. The idea is to produce a Cryo‐AntiCoincidence (Cryo‐AC) based on a silicon absorber and read by a TES (Transition‐Edge Sensor). This configuration would ensure very good performances in terms of efficiency, time response and signal to noise ratio. We present the results of estimations, simulations and preliminary measurement.


Proceedings of SPIE | 2014

The Cryogenic AntiCoincidence detector for ATHENA: the progress towards the final pixel design

C. Macculi; Luigi Piro; Donatella Cea; L. Colasanti; Simone Lotti; L. Natalucci; F. Gatti; D. Bagliani; M. Biasotti; D. Corsini; G. Pizzigoni; G. Torrioli; Marco Barbera; Teresa Mineo; Emanuele Perinati

“The Hot and Energetic Universe” is the scientific theme approved by the ESA SPC for a Large mission to be flown in the next ESA slot (2028th) timeframe. ATHENA is a space mission proposal tailored on this scientific theme. It will be the first X-ray mission able to perform the so-called “Integral field spectroscopy”, by coupling a high-resolution spectrometer, the X-ray Integral Field Unit (X-IFU), to a high performance optics so providing detailed images of its field of view (5’ in diameter) with an angular resolution of 5” and fine energy-spectra (2.5eV@E<7keV). The X-IFU is a kilo-pixel array based on TES (Transition Edge Sensor) microcalorimeters providing high resolution spectroscopy in the 0.2-12 keV range. Some goals is the detection of faint and diffuse sources as Warm Hot Intergalactic Medium (WHIM) or galaxies outskirts. To reach its challenging scientific aims, it is necessary to shield efficiently the X-IFU instrument against background induced by external particles: the goal is 0.005 cts/cm^2/s/keV. This scientific requirement can be met by using an active Cryogenic AntiCoincidence (CryoAC) detector placed very close to X-IFU (~ 1 mm below). This is shown by our GEANT4 simulation of the expected background at L2 orbit. The CryoAC is a TES based detector as the X-IFU sharing with it thermal and mechanical interfaces, so increasing the Technology Readiness Level (TRL) of the payload. It is a 2x2 array of microcalorimeter detectors made by Silicon absorber (each of about 80 mm^2 and 300 μm thick) and sensed by an Ir TES. This choice shows that it is possible to operate such a detector in the so-called athermal regime which gives a response faster than the X-IFU (< 30 μs), and low energy threshold (above few keV). Our consortium has developed and tested several samples, some of these also featured by the presence of Al-fins to efficiently collect the athermal phonons, and increased x-ray absorber area (up to 1 cm^2). Here the results of deep test related to one of the last sample produced (namely AC-S5), and steps to reach the final detector design will be discussed.


Proceedings of SPIE | 2010

Estimate of the background for the X-Ray Microcalorimeter Spectrometer onboard of IXO

Emanuele Perinati; Teresa Mineo; L. Colasanti; Simone Lotti; C. Macculi; L. Natalucci; Luigi Piro

We present a study of the background for the array of microcalorimeters onboard of the International X-ray Observatory space mission. We investigated through simulations the rates at the focal plane of soft and hard particles in L2 orbit. Assuming the presence of an anticoincidence instrument, we derived an estimate of the residual background. The preliminary results reported in this paper are based on a number of simplifications of the actual picture. Efforts to improve the model are on-going.


Proceedings of SPIE | 2010

The TES-based cryogenic anticoincidence detector for IXO: first results from large area prototypes

C. Macculi; L. Colasanti; Simone Lotti; L. Natalucci; Luigi Piro; D. Bagliani; Francesco Brunetto; Lorenza Ferrari; F. Gatti; G. Torrioli; P. Bastia; Arnaldo Bonati; Marco Barbera; Giovanni La Rosa; Teresa Mineo; Emanuele Perinati

The technique which combines high resolution spectroscopy with imaging capability is a powerful tool to extract fundamental information in X-ray Astrophysics and Cosmology. TES (Transition Edge Sensors)-based microcalorimeters match at best the requirements for doing fine spectroscopy and imaging of both bright (high count rate) and faint (poor signal-to-noise ratio) sources. For this reason they are considered among the most promising detectors for the next high energy space missions and are being developed for use on the focal plane of the IXO (International X-ray Observatory) mission. In order to achieve the required signal-to-noise ratio for faint or diffuse sources it is necessary to reduce the particle-induced background by almost two orders of magnitude. This reduction can only be achieved by adopting an active anticoincidence technique. In this paper, we will present a novel anticoincidence detector based on a TES sensor developed for the IXO mission. The pulse duration and the large area of the IXO TESarray (XMS X-ray Microcalorimeter Spectrometer) require a proper design of the anticoincidence detector. It has to cover the full XMS area, yet delivering a fast response. We have therefore chosen to develop it in a four-pixel design. Experimental results from the large-area pixel prototypes will be discussed, also including design considerations.

Collaboration


Dive into the L. Colasanti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Torrioli

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Researchain Logo
Decentralizing Knowledge